Appearance analysis for diagnosing malignant lung nodules

A. El-Baz, G. Gimel'farb, R. Falk, M. El-Ghar
{"title":"Appearance analysis for diagnosing malignant lung nodules","authors":"A. El-Baz, G. Gimel'farb, R. Falk, M. El-Ghar","doi":"10.1109/ISBI.2010.5490380","DOIUrl":null,"url":null,"abstract":"An alternative method of diagnosing malignant lung nodules by their visual appearance rather than conventional growth rate is proposed. Spatial distribution of image intensities (or Hounsfield values) comprising the malignant nodule appearance is accurately modeled with a rotation invariant second-order Markov-Gibbs random field. Its neighborhood system and potentials are analytically learned from a training set of nodule images with normalized intensity ranges. Preliminary experiments on 109 lung nodules (51 malignant and 58 benign ones) resulted in the 96.3% correct classification (for the 95% confidence interval), showing the proposed method is a promising supplement to current technologies for early diagnostics of lung cancer.","PeriodicalId":250523,"journal":{"name":"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2010.5490380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

Abstract

An alternative method of diagnosing malignant lung nodules by their visual appearance rather than conventional growth rate is proposed. Spatial distribution of image intensities (or Hounsfield values) comprising the malignant nodule appearance is accurately modeled with a rotation invariant second-order Markov-Gibbs random field. Its neighborhood system and potentials are analytically learned from a training set of nodule images with normalized intensity ranges. Preliminary experiments on 109 lung nodules (51 malignant and 58 benign ones) resulted in the 96.3% correct classification (for the 95% confidence interval), showing the proposed method is a promising supplement to current technologies for early diagnostics of lung cancer.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
诊断肺恶性结节的外观分析
一种替代方法诊断恶性肺结节的视觉外观,而不是传统的增长速度提出。包含恶性结节外观的图像强度(或Hounsfield值)的空间分布用旋转不变二阶Markov-Gibbs随机场精确建模。它的邻域系统和电位是从具有归一化强度范围的结节图像训练集中解析学习到的。对109个肺结节(51个为恶性结节,58个为良性结节)进行初步实验,准确率为96.3%(95%置信区间),表明该方法是对现有肺癌早期诊断技术的有益补充。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhanced detection of cell paths in spatiotemporal plots for noninvasive microscopy of the human retina Automatic segmentation of pulmonary vasculature in thoracic CT scans with local thresholding and airway wall removal Fast and closed-form ensemble-average-propagator approximation from the 4th-order diffusion tensor Probabilistic branching node detection using AdaBoost and hybrid local features Multiphase level set for automated delineation of membrane-bound macromolecules
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1