Exploratory Data Analysis for Demand-side Flexibility Quantification

Arqum Shahid, Roya Ahmadiahangar, A. Rosin, Vahur Maask, João Martins
{"title":"Exploratory Data Analysis for Demand-side Flexibility Quantification","authors":"Arqum Shahid, Roya Ahmadiahangar, A. Rosin, Vahur Maask, João Martins","doi":"10.1109/CPE-POWERENG58103.2023.10227408","DOIUrl":null,"url":null,"abstract":"This research article explores various methods for quantifying demand-side flexibility and focuses on one particular technique based on power consumption. The study performs exploratory data analysis on the AMPds dataset in the time domain, encompassing trend and correlation analysis and attributes distribution analysis to highlight the importance of considering different factors influencing household power consumption. The analysis results are used to aid in the feature selection and extraction process of machine learning model development for determining demand-side flexibility through power consumption. This article provides valuable insights for researchers and practitioners in the energy industry looking to better understand demand-side flexibility and estimate its quantification.","PeriodicalId":315989,"journal":{"name":"2023 IEEE 17th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG)","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 17th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CPE-POWERENG58103.2023.10227408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This research article explores various methods for quantifying demand-side flexibility and focuses on one particular technique based on power consumption. The study performs exploratory data analysis on the AMPds dataset in the time domain, encompassing trend and correlation analysis and attributes distribution analysis to highlight the importance of considering different factors influencing household power consumption. The analysis results are used to aid in the feature selection and extraction process of machine learning model development for determining demand-side flexibility through power consumption. This article provides valuable insights for researchers and practitioners in the energy industry looking to better understand demand-side flexibility and estimate its quantification.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
需求侧灵活性量化的探索性数据分析
这篇研究文章探讨了量化需求侧灵活性的各种方法,并重点介绍了一种基于功耗的特定技术。本研究对AMPds数据集进行了时间域的探索性数据分析,包括趋势和相关性分析以及属性分布分析,以突出考虑影响家庭用电量的不同因素的重要性。分析结果用于帮助机器学习模型开发的特征选择和提取过程,以通过功耗确定需求侧灵活性。本文为能源行业的研究人员和从业者提供了有价值的见解,以更好地理解需求侧灵活性并估计其量化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
AC Loss Analysis Approaches for Hairpin Winding Configuration: Analytical, Hybrid Model, and FEA Comparison of Decoupling Control Strategies for Multiple Active Bridge DC-DC Converter Risk-averse Estimation of Electric Heat Pump Power Consumption Triple-Loop Control Configuration for Grid-Connected LCL-Filtered Inverters Based on Time-Domain Design Power Quality Management in Microgrids for Mission Critical NZEBs: A Case Study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1