Predictive Analytics of Machine Failure using Linear Regression on KNIME Platform

E. A. P. Akhir, Nasha Ayuni
{"title":"Predictive Analytics of Machine Failure using Linear Regression on KNIME Platform","authors":"E. A. P. Akhir, Nasha Ayuni","doi":"10.1145/3480433.3480445","DOIUrl":null,"url":null,"abstract":"The failure of machines at oil and gas platforms that will temporarily stop oil production commonly happens. The failure may refer to the machine that has stopped working, is not working properly, or does not meet target expectations. In this research, we are assessing the state of the condition of a turbine generator. A turbine generator is a connection of a shaft of a steam turbine or gas turbine engine connected to a high-speed electric generator to generate electricity in the process of drilling and digging. Machine failure will cause loss to the oil and gas industry due to the interruption of oil production. Hence, the purpose of this study is to predict machine failure using linear regression on KNIME platform. By predicting machine time-to-failure using machine learning, maintenance can be scheduled and performed before failure occurs. Upon measuring the accuracy of the predicted model, the result will be visualized through a dashboard for user monitoring.","PeriodicalId":415865,"journal":{"name":"2021 5th International Conference on Artificial Intelligence and Virtual Reality (AIVR)","volume":"151 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 5th International Conference on Artificial Intelligence and Virtual Reality (AIVR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3480433.3480445","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The failure of machines at oil and gas platforms that will temporarily stop oil production commonly happens. The failure may refer to the machine that has stopped working, is not working properly, or does not meet target expectations. In this research, we are assessing the state of the condition of a turbine generator. A turbine generator is a connection of a shaft of a steam turbine or gas turbine engine connected to a high-speed electric generator to generate electricity in the process of drilling and digging. Machine failure will cause loss to the oil and gas industry due to the interruption of oil production. Hence, the purpose of this study is to predict machine failure using linear regression on KNIME platform. By predicting machine time-to-failure using machine learning, maintenance can be scheduled and performed before failure occurs. Upon measuring the accuracy of the predicted model, the result will be visualized through a dashboard for user monitoring.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于KNIME平台的机器故障线性回归预测分析
石油和天然气平台的机器故障会暂时停止石油生产,这种情况经常发生。故障可能是指机器已经停止工作,不能正常工作,或没有达到目标预期。在这项研究中,我们正在评估汽轮发电机的状态。汽轮发电机是将蒸汽轮机或燃气轮机发动机的轴与高速发电机相连,在钻孔和挖掘过程中产生电力的连接件。机器故障会导致石油生产中断,给油气行业造成损失。因此,本研究的目的是在KNIME平台上使用线性回归预测机器故障。通过使用机器学习预测机器的故障时间,可以在故障发生之前安排和执行维护。在测量预测模型的准确性后,结果将通过仪表板可视化,供用户监控。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhanced Cognitive Training using Virtual Reality: Examining a Memory Task Modified for Use in Virtual Environments A Sport Project and Its Future Applications: How to Implement Speculative Design to Fulfill Users’ Needs Virtual Reality Oriented Modeling and Simulation of Amphibious Aircraft Forest Fire Extinguishing Mission Scene Design and Implementation of “Winning Luding Bridge” Immersion FPS Game Based on Unity3D Technology Point Cloud Interaction and Manipulation in Virtual Reality
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1