Radio Source Localization Using Received Signal Strength in a Multipath Environment

Shuai Sun, Xuezhi Wang, B. Moran, A. Al-Hourani, Wayne S. T. Rowe
{"title":"Radio Source Localization Using Received Signal Strength in a Multipath Environment","authors":"Shuai Sun, Xuezhi Wang, B. Moran, A. Al-Hourani, Wayne S. T. Rowe","doi":"10.23919/fusion43075.2019.9011233","DOIUrl":null,"url":null,"abstract":"We consider the problem of localizing a radio emitter in a wireless network using RSS measured by a set of known network nodes in a multipath environment. While the RSS of a wireless signal can be conveniently accessed, using it to estimate location is nontrivial in the presence of multipath. We propose a HMM model within a Bayesian learning framework for processing RSS data in the localization process to deal with RSS fluctuations induced by multipath interference. To address the uncertainty of emitter dynamics, a semi-Markov model is also adopted to model the duration time of the emitter sojourn in a state. We compare the performance of the HMM methods, HsMM methods and RSS fingerprinting methods via a real experiment of a two-region emitter localization problem and Monte Carlo simulations using ray-tracing software.","PeriodicalId":348881,"journal":{"name":"2019 22th International Conference on Information Fusion (FUSION)","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 22th International Conference on Information Fusion (FUSION)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/fusion43075.2019.9011233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We consider the problem of localizing a radio emitter in a wireless network using RSS measured by a set of known network nodes in a multipath environment. While the RSS of a wireless signal can be conveniently accessed, using it to estimate location is nontrivial in the presence of multipath. We propose a HMM model within a Bayesian learning framework for processing RSS data in the localization process to deal with RSS fluctuations induced by multipath interference. To address the uncertainty of emitter dynamics, a semi-Markov model is also adopted to model the duration time of the emitter sojourn in a state. We compare the performance of the HMM methods, HsMM methods and RSS fingerprinting methods via a real experiment of a two-region emitter localization problem and Monte Carlo simulations using ray-tracing software.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在多径环境中使用接收信号强度进行无线电源定位
我们考虑了在多路径环境中使用一组已知网络节点测量的RSS来定位无线网络中的无线电发射器的问题。虽然无线信号的RSS可以方便地访问,但在存在多路径的情况下,使用它来估计位置是不平凡的。我们提出了一种基于贝叶斯学习框架的HMM模型,用于处理定位过程中RSS数据,以处理多径干扰引起的RSS波动。为了解决发射器动力学的不确定性,还采用了半马尔可夫模型来模拟发射器在某一状态下停留的时间。通过双区域发射器定位问题的真实实验和使用光线追踪软件进行蒙特卡罗模拟,比较了HMM方法、HsMM方法和RSS指纹识别方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Continuum Detection and Predictive-Corrective Classification of Crack Networks Adaptive BM3D Algorithm for Image Denoising Using Coefficient of Variation A Latent Variable Model State Estimation System for Image Sequences Adaptive Approximate Bayesian Computational Particle Filters for Underwater Terrain Aided Navigation Pooling Tweets by Fine-Grained Emotions to Uncover Topic Trends in Social Media
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1