VisuaLizations As Intermediate Representations (VLAIR): An approach for applying deep learning-based computer vision to non-image-based data

IF 3.8 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Visual Informatics Pub Date : 2022-09-01 DOI:10.1016/j.visinf.2022.05.001
Ai Jiang , Miguel A. Nacenta , Juan Ye
{"title":"VisuaLizations As Intermediate Representations (VLAIR): An approach for applying deep learning-based computer vision to non-image-based data","authors":"Ai Jiang ,&nbsp;Miguel A. Nacenta ,&nbsp;Juan Ye","doi":"10.1016/j.visinf.2022.05.001","DOIUrl":null,"url":null,"abstract":"<div><p>Deep learning algorithms increasingly support automated systems in areas such as human activity recognition and purchase recommendation. We identify a current trend in which data is transformed first into abstract visualizations and then processed by a computer vision deep learning pipeline. We call this VisuaLization As Intermediate Representation (VLAIR) and believe that it can be instrumental to support accurate recognition in a number of fields while also enhancing humans’ ability to interpret deep learning models for debugging purposes or for personal use. In this paper we describe the potential advantages of this approach and explore various visualization mappings and deep learning architectures. We evaluate several VLAIR alternatives for a specific problem (human activity recognition in an apartment) and show that VLAIR attains classification accuracy above classical machine learning algorithms and several other non-image-based deep learning algorithms with several data representations.</p></div>","PeriodicalId":36903,"journal":{"name":"Visual Informatics","volume":"6 3","pages":"Pages 35-50"},"PeriodicalIF":3.8000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468502X22000365/pdfft?md5=4cc6e01dd1fe8dfea6194fce4dffdeef&pid=1-s2.0-S2468502X22000365-main.pdf","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visual Informatics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468502X22000365","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 4

Abstract

Deep learning algorithms increasingly support automated systems in areas such as human activity recognition and purchase recommendation. We identify a current trend in which data is transformed first into abstract visualizations and then processed by a computer vision deep learning pipeline. We call this VisuaLization As Intermediate Representation (VLAIR) and believe that it can be instrumental to support accurate recognition in a number of fields while also enhancing humans’ ability to interpret deep learning models for debugging purposes or for personal use. In this paper we describe the potential advantages of this approach and explore various visualization mappings and deep learning architectures. We evaluate several VLAIR alternatives for a specific problem (human activity recognition in an apartment) and show that VLAIR attains classification accuracy above classical machine learning algorithms and several other non-image-based deep learning algorithms with several data representations.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
可视化作为中间表示(VLAIR):一种将基于深度学习的计算机视觉应用于非图像数据的方法
深度学习算法越来越多地支持人类活动识别和购买推荐等领域的自动化系统。我们确定了当前的趋势,即数据首先转换为抽象的可视化,然后由计算机视觉深度学习管道进行处理。我们将这种可视化称为中间表示(VLAIR),并相信它可以帮助支持许多领域的准确识别,同时还可以增强人类为调试目的或个人使用而解释深度学习模型的能力。在本文中,我们描述了这种方法的潜在优势,并探索了各种可视化映射和深度学习架构。我们对特定问题(公寓中的人类活动识别)的几种VLAIR替代方案进行了评估,并表明VLAIR达到了优于经典机器学习算法和其他几种具有多种数据表示的非基于图像的深度学习算法的分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Visual Informatics
Visual Informatics Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
6.70
自引率
3.30%
发文量
33
审稿时长
79 days
期刊最新文献
Intelligent CAD 2.0 Editorial Board RelicCARD: Enhancing cultural relics exploration through semantics-based augmented reality tangible interaction design JobViz: Skill-driven visual exploration of job advertisements Visual evaluation of graph representation learning based on the presentation of community structures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1