Neural network based preventive control support system for power system stability enhancement

H. Saitoh, Y. Shimotori, J. Toyoda
{"title":"Neural network based preventive control support system for power system stability enhancement","authors":"H. Saitoh, Y. Shimotori, J. Toyoda","doi":"10.1109/ANN.1991.213513","DOIUrl":null,"url":null,"abstract":"The authors propose an application of a newly developed neural network to the preventive control of a power system. The purpose of the proposed control is to improve the damping effect of the system on electromechanical modes by reallocating load to generators. Since the neural network has flexible learning capability the authors apply it to identify the complex and nonlinear relation between the damping effect and the distribution of generating power. The trained neural network acts as the support system which aids an operator in performing the generating reallocation for enhancing the system stability. Furthermore, the authors develop a new type of neural network which can deal with the equal constraints about the output layer in the error-back-propagation type of neural network because it is important for the generating reallocation to satisfy the equal constraint about the energy balance between generation and load.<<ETX>>","PeriodicalId":119713,"journal":{"name":"Proceedings of the First International Forum on Applications of Neural Networks to Power Systems","volume":"428 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the First International Forum on Applications of Neural Networks to Power Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANN.1991.213513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The authors propose an application of a newly developed neural network to the preventive control of a power system. The purpose of the proposed control is to improve the damping effect of the system on electromechanical modes by reallocating load to generators. Since the neural network has flexible learning capability the authors apply it to identify the complex and nonlinear relation between the damping effect and the distribution of generating power. The trained neural network acts as the support system which aids an operator in performing the generating reallocation for enhancing the system stability. Furthermore, the authors develop a new type of neural network which can deal with the equal constraints about the output layer in the error-back-propagation type of neural network because it is important for the generating reallocation to satisfy the equal constraint about the energy balance between generation and load.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于神经网络的电力系统稳定性增强预防控制支持系统
提出了一种新发展的神经网络在电力系统预防控制中的应用。所提出的控制的目的是通过将负载重新分配给发电机来改善系统对机电模式的阻尼效果。由于神经网络具有灵活的学习能力,作者将其应用于识别阻尼效应与发电功率分布之间的复杂非线性关系。训练后的神经网络作为支持系统,帮助操作员进行生成再分配,以提高系统的稳定性。此外,由于满足发电与负荷之间能量平衡的相等约束是发电再分配的重要条件,作者开发了一种新的神经网络,该神经网络可以处理误差反向传播型神经网络中关于输出层的相等约束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Finite precision error analysis for neural network learning Hybrid expert system neural network hierarchical architecture for classifying power system contingencies Neural network application to state estimation computation Short term electric load forecasting using an adaptively trained layered perceptron Neural networks for topology determination of power systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1