{"title":"A wavelet neural network model for spatio-temporal image processing and modeling","authors":"Hua-Liang Wei, Yifan Zhao, Richard M. Jiang","doi":"10.1109/ICCSE.2015.7250228","DOIUrl":null,"url":null,"abstract":"Spatio-temporal images are a class of complex dynamical systems that evolve over both space and time. Compared with pure temporal processes, the identification of spatio-temporal models from observed images is much more difficult and quite challenging. Starting with an assumption that there is no a priori information about the true model but only observed data are available, this work introduces a new type of wavelet network that utilizes the easy tractability and exploits the good properties of multiscale wavelet decompositions to represent the rules of the associated spatio-temporal evolutionary system. An application to a chemical reaction exhibiting a spatio-temporal evolutionary behaviour, is investigated to demonstrate the application of the proposed modeling and learning approaches.","PeriodicalId":311451,"journal":{"name":"2015 10th International Conference on Computer Science & Education (ICCSE)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 10th International Conference on Computer Science & Education (ICCSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSE.2015.7250228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Spatio-temporal images are a class of complex dynamical systems that evolve over both space and time. Compared with pure temporal processes, the identification of spatio-temporal models from observed images is much more difficult and quite challenging. Starting with an assumption that there is no a priori information about the true model but only observed data are available, this work introduces a new type of wavelet network that utilizes the easy tractability and exploits the good properties of multiscale wavelet decompositions to represent the rules of the associated spatio-temporal evolutionary system. An application to a chemical reaction exhibiting a spatio-temporal evolutionary behaviour, is investigated to demonstrate the application of the proposed modeling and learning approaches.