SAXJS: An Online Change Point Detection for Wearable Sensor Data

Giovanna A. Riqueti, P. H. Barros, J. B. Borges, Felipe D. Cunha, O. Rosso, Heitor S. Ramos
{"title":"SAXJS: An Online Change Point Detection for Wearable Sensor Data","authors":"Giovanna A. Riqueti, P. H. Barros, J. B. Borges, Felipe D. Cunha, O. Rosso, Heitor S. Ramos","doi":"10.5753/sbrc.2023.395","DOIUrl":null,"url":null,"abstract":"Wearable electronics are devices used by humans that can continuously and uninterruptedly monitor human activity through sensor data. The data collected by them have several applications, such as recommending running techniques and helping to monitor health status. Segmenting such data into chunks containing only a single human activity is challenging due to the wide variability of underlying process characteristics presented in the data. To deal with this problem, we propose a new change point detection algorithm based on the Symbolic Aggregate approXimation (SAX) transformation, the probability of transition between symbols, and the Jensen-Shannon distance.","PeriodicalId":254689,"journal":{"name":"Anais do XLI Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos (SBRC 2023)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XLI Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos (SBRC 2023)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/sbrc.2023.395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Wearable electronics are devices used by humans that can continuously and uninterruptedly monitor human activity through sensor data. The data collected by them have several applications, such as recommending running techniques and helping to monitor health status. Segmenting such data into chunks containing only a single human activity is challenging due to the wide variability of underlying process characteristics presented in the data. To deal with this problem, we propose a new change point detection algorithm based on the Symbolic Aggregate approXimation (SAX) transformation, the probability of transition between symbols, and the Jensen-Shannon distance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SAXJS:可穿戴传感器数据的在线变化点检测
可穿戴电子设备是人类使用的可以通过传感器数据连续不间断地监测人类活动的设备。他们收集的数据有几个应用,比如推荐跑步技术和帮助监控健康状态。将这样的数据分割成只包含单个人类活动的块是具有挑战性的,因为数据中呈现的潜在过程特征具有很大的可变性。为了解决这一问题,我们提出了一种新的基于符号聚合近似(SAX)变换、符号间转移概率和Jensen-Shannon距离的变化点检测算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Telemetria Adaptativa Usando Aprendizado por Reforço Profundo em Redes Definidas por Software Heurística Escalável Para o Problema de Alocação de vBBU e Comprimento de Onda em Cloud-Fog RAN Autoencoders Assimétricos para a Compressão de Dados IoT Caracterização das vulnerabilidades dos roteadores Wi-Fi no mercado brasileiro Gaming On The Edge: Uma arquitetura de computação na borda para jogos em dispositivos móveis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1