Decoding and mapping of right hand motor imagery tasks using EEG source imaging

B. Edelman, Bryan S. Baxter, B. He
{"title":"Decoding and mapping of right hand motor imagery tasks using EEG source imaging","authors":"B. Edelman, Bryan S. Baxter, B. He","doi":"10.1109/NER.2015.7146593","DOIUrl":null,"url":null,"abstract":"Current EEG based brain computer interface (BCI) systems have achieved successful control in up to 3 dimensions; however, the current sensor-based paradigm is not well suited for many rehabilitative and recreational applications that require motor imagination (MI) tasks of fine motor movements to be recognized. Therefore there is a great need to find complex MI tasks that are intuitive for BCI users to perform and that can be classified with high accuracy. In this paper we present our results on classifying four MI tasks of the right hand, flexion, extension, supination and pronation using a novel EEG source imaging approach. Using this approach we were able to improve the four-class classification of the four tasks by nearly 10% as compared to traditional sensor-based techniques.","PeriodicalId":137451,"journal":{"name":"2015 7th International IEEE/EMBS Conference on Neural Engineering (NER)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 7th International IEEE/EMBS Conference on Neural Engineering (NER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NER.2015.7146593","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Current EEG based brain computer interface (BCI) systems have achieved successful control in up to 3 dimensions; however, the current sensor-based paradigm is not well suited for many rehabilitative and recreational applications that require motor imagination (MI) tasks of fine motor movements to be recognized. Therefore there is a great need to find complex MI tasks that are intuitive for BCI users to perform and that can be classified with high accuracy. In this paper we present our results on classifying four MI tasks of the right hand, flexion, extension, supination and pronation using a novel EEG source imaging approach. Using this approach we were able to improve the four-class classification of the four tasks by nearly 10% as compared to traditional sensor-based techniques.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于脑电源成像的右手运动想象任务的解码与映射
目前基于脑电图的脑机接口(BCI)系统已经成功实现了三维控制;然而,目前基于传感器的模式并不适合许多需要识别精细运动的运动想象(MI)任务的康复和娱乐应用。因此,非常需要找到复杂的MI任务,这些任务对于BCI用户来说是直观的,并且可以以高精度进行分类。在本文中,我们介绍了我们的结果分类四个MI任务的右手,屈曲,伸展,旋后和旋前使用一种新的脑电图源成像方法。使用这种方法,与传统的基于传感器的技术相比,我们能够将四个任务的四类分类提高近10%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
iNODE in-vivo testing for selective vagus nerve recording and stimulation Computational studies on urinary bladder smooth muscle: Modeling ion channels and their role in generating electrical activity Fast calibration of a thirteen-command BCI by simulating SSVEPs from trains of transient VEPs - towards time-domain SSVEP BCI paradigms A hybrid NMES-exoskeleton for real objects interaction Computationally efficient, configurable, causal, real-time phase detection applied to local field potential oscillations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1