{"title":"Learning from Heterogeneous Networks: Methods and Applications","authors":"Chuxu Zhang","doi":"10.1145/3336191.3372182","DOIUrl":null,"url":null,"abstract":"Complex systems in different disciplines are usually modeled as heterogeneous networks. Different from homogeneous networks or attributed networks, heterogeneous networks are associated with complexity in heterogeneous structure or heterogeneous content or both. The abundant information in heterogeneous networks provide opportunities yet pose challenges for researchers and practitioners to develop customized machine learning solutions for solving different problems in complex systems. We are motivated to do significant work for learning from heterogeneous networks. In this paper, we first introduce the motivation and background of this research. Later, we present our current work which include a series of proposed methods and applications. These methods will be introduced in the perspectives of personalization in web-based systems and heterogeneous network embedding. In the end, we raise several research directions as future agenda.","PeriodicalId":319008,"journal":{"name":"Proceedings of the 13th International Conference on Web Search and Data Mining","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3336191.3372182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Complex systems in different disciplines are usually modeled as heterogeneous networks. Different from homogeneous networks or attributed networks, heterogeneous networks are associated with complexity in heterogeneous structure or heterogeneous content or both. The abundant information in heterogeneous networks provide opportunities yet pose challenges for researchers and practitioners to develop customized machine learning solutions for solving different problems in complex systems. We are motivated to do significant work for learning from heterogeneous networks. In this paper, we first introduce the motivation and background of this research. Later, we present our current work which include a series of proposed methods and applications. These methods will be introduced in the perspectives of personalization in web-based systems and heterogeneous network embedding. In the end, we raise several research directions as future agenda.