Overlay performances of wafer scale nanoimprint lithography

J. Reche, Api Warsono, Anaïs De Lehelle D'Affroux, Jonas Khan, S. Haumann, A. Kneidinger
{"title":"Overlay performances of wafer scale nanoimprint lithography","authors":"J. Reche, Api Warsono, Anaïs De Lehelle D'Affroux, Jonas Khan, S. Haumann, A. Kneidinger","doi":"10.1117/12.2655105","DOIUrl":null,"url":null,"abstract":"Since its beginning in the 90’s NanoImprint Lithography (NIL) has been continuously improved to target the different industry requirements. Using an intermediate soft stamp media was one of the main improvements and has now become a standard technology. Based on that technology, EVG introduces a full wafer imprinting solution, whereas the size of the stamp corresponds to the size of the wafer to imprint. Results obtained at CEA-Leti using this solution, with respect to uniformity, sub-50nm resolution, repeatability, and high aspect ratio patterns, are today state of the art and allow NIL to be considered as an HVM technology. Nevertheless, further development is carried out on different aspects such as overlay (OVL) which is the scope of this work. Different contributors of OVL as translation, rotation but also distortion are dissociated and analyzed. Alignment repeatability is studied. Additionally, imprint to imprint OVL correction terms are applied. A dedicated methodology has been established and allows to obtain global OVL signature. According to the above, main process contributors are highlighted and studied in the paper to separate influence of each of them. Finally, different ways to improve overlay are discussed and some of them - which could be linked to hardware, process or both - are evaluated. Overall, the OVL status obtained and first improvements bring NIL technology closer to the alignment requirements of the industry.","PeriodicalId":212235,"journal":{"name":"Advanced Lithography","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Lithography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2655105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Since its beginning in the 90’s NanoImprint Lithography (NIL) has been continuously improved to target the different industry requirements. Using an intermediate soft stamp media was one of the main improvements and has now become a standard technology. Based on that technology, EVG introduces a full wafer imprinting solution, whereas the size of the stamp corresponds to the size of the wafer to imprint. Results obtained at CEA-Leti using this solution, with respect to uniformity, sub-50nm resolution, repeatability, and high aspect ratio patterns, are today state of the art and allow NIL to be considered as an HVM technology. Nevertheless, further development is carried out on different aspects such as overlay (OVL) which is the scope of this work. Different contributors of OVL as translation, rotation but also distortion are dissociated and analyzed. Alignment repeatability is studied. Additionally, imprint to imprint OVL correction terms are applied. A dedicated methodology has been established and allows to obtain global OVL signature. According to the above, main process contributors are highlighted and studied in the paper to separate influence of each of them. Finally, different ways to improve overlay are discussed and some of them - which could be linked to hardware, process or both - are evaluated. Overall, the OVL status obtained and first improvements bring NIL technology closer to the alignment requirements of the industry.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
晶片级纳米压印光刻的覆盖性能
自90年代开始,纳米压印光刻(NIL)一直在不断改进,以满足不同行业的需求。使用中间软压印介质是主要的改进之一,现在已经成为一种标准技术。基于该技术,EVG引入了一个完整的晶圆压印解决方案,而印章的尺寸对应于要压印的晶圆的尺寸。在CEA-Leti使用该解决方案获得的结果,在均匀性、低于50nm的分辨率、可重复性和高纵横比模式方面,是当今最先进的技术,允许NIL被认为是一种HVM技术。然而,在不同方面进行了进一步的开发,例如覆盖(OVL),这是本工作的范围。分析了OVL的不同影响因素,如平移、旋转和畸变。研究了对准的可重复性。此外,还应用了印对印OVL校正项。一个专门的方法已经建立,并允许获得全局OVL签名。据此,本文对主要的工艺因素进行了突出和研究,分离出各自的影响。最后,讨论了改善覆盖的不同方法,并对其中一些方法进行了评估,这些方法可以与硬件、工艺或两者相关联。总体而言,获得的OVL状态和首次改进使NIL技术更接近行业的对准要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Considerations in the design of photoacid generators Predicting the critical features of the chemically-amplified resist profile based on machine learning Application of double exposure technique in plasmonic lithography The damage control of sub layer while ion-driven etching with vertical carbon profile implemented Ultra-high carbon fullerene-based spin-on-carbon hardmasks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1