Bathymetric factor graph SLAM with sparse point cloud alignment

Vittorio Bichucher, Jeffrey M. Walls, P. Ozog, K. Skinner, R. Eustice
{"title":"Bathymetric factor graph SLAM with sparse point cloud alignment","authors":"Vittorio Bichucher, Jeffrey M. Walls, P. Ozog, K. Skinner, R. Eustice","doi":"10.23919/OCEANS.2015.7404433","DOIUrl":null,"url":null,"abstract":"This paper reports on a factor graph simultaneous localization and mapping framework for autonomous underwater vehicle localization based on terrain-aided navigation. The method requires no prior bathymetric map and only assumes that the autonomous underwater vehicle has the ability to sparsely sense the local water column depth, such as with a bottom-looking Doppler velocity log. Since dead-reckoned navigation is accurate in short time windows, the vehicle accumulates several water column depth point clouds- or submaps-during the course of its survey. We propose an xy-alignment procedure between these submaps in order to enforce consistent bathymetric structure over time, and therefore attempt to bound long-term navigation drift. We evaluate the submap alignment method in simulation and present performance results from multiple autonomous underwater vehicle field trials.","PeriodicalId":403976,"journal":{"name":"OCEANS 2015 - MTS/IEEE Washington","volume":"152 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"OCEANS 2015 - MTS/IEEE Washington","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/OCEANS.2015.7404433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

This paper reports on a factor graph simultaneous localization and mapping framework for autonomous underwater vehicle localization based on terrain-aided navigation. The method requires no prior bathymetric map and only assumes that the autonomous underwater vehicle has the ability to sparsely sense the local water column depth, such as with a bottom-looking Doppler velocity log. Since dead-reckoned navigation is accurate in short time windows, the vehicle accumulates several water column depth point clouds- or submaps-during the course of its survey. We propose an xy-alignment procedure between these submaps in order to enforce consistent bathymetric structure over time, and therefore attempt to bound long-term navigation drift. We evaluate the submap alignment method in simulation and present performance results from multiple autonomous underwater vehicle field trials.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于稀疏点云对齐的深度因子图SLAM
提出了一种基于地形辅助导航的水下机器人自主定位的因子图同步定位与制图框架。该方法不需要事先绘制水深图,只假设自主水下航行器有能力稀疏地感知当地水柱深度,例如使用底部的多普勒速度日志。由于定点导航在短时间内是准确的,因此在测量过程中,车辆会积累几个水柱深度点云——或子地图。我们提出了这些子地图之间的x -对准程序,以便随着时间的推移强制一致的测深结构,因此试图绑定长期的导航漂移。我们在仿真中评估了子地图对准方法,并给出了多个自主水下航行器现场试验的性能结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Integration of a RSI microstructure sensing package into a Seaglider Capacity analysis for broadband communications on sea A methodology to improve the assessment of vulnerability on the maritime supply chain of energy Detection of false AIS messages for the improvement of maritime situational awareness Automated point cloud correspondence detection for underwater mapping using AUVs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1