Face Recognition Using Eigenfaces, Geometrical PCA Approximation and Neural Networks

Alina L. Machidon, O. Machidon, P. Ogrutan
{"title":"Face Recognition Using Eigenfaces, Geometrical PCA Approximation and Neural Networks","authors":"Alina L. Machidon, O. Machidon, P. Ogrutan","doi":"10.1109/TSP.2019.8768864","DOIUrl":null,"url":null,"abstract":"The human face exhibits a high level of complexity when it is regarded as a multidimensional visual model, leading to face recognition systems that require difficult and extensive computations for coding and decoding the face images. A well-established approach in this regard is based on using principle component analysis (PCA) for both feature extraction and face recognition, known as the eigenface approach. This technique, despite a good recognition rate, suffers from the disadvantage of high computation cost due to the complexity of the PCA algorithm. In this paper, we use a geometrical approximated PCA (gaPCA) algorithm for computing the eigenfaces for three different datasets. The face recognition task is performed using a similarity score based on the inverse Euclidean distance for the first two datasets and using a nerual network in the third case. All the results are compared to the case where standard PCA is used. These accuracy results show that gaPCA represents a viable alternative to the classical statistical approach for computing the principal components.","PeriodicalId":399087,"journal":{"name":"2019 42nd International Conference on Telecommunications and Signal Processing (TSP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 42nd International Conference on Telecommunications and Signal Processing (TSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSP.2019.8768864","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

The human face exhibits a high level of complexity when it is regarded as a multidimensional visual model, leading to face recognition systems that require difficult and extensive computations for coding and decoding the face images. A well-established approach in this regard is based on using principle component analysis (PCA) for both feature extraction and face recognition, known as the eigenface approach. This technique, despite a good recognition rate, suffers from the disadvantage of high computation cost due to the complexity of the PCA algorithm. In this paper, we use a geometrical approximated PCA (gaPCA) algorithm for computing the eigenfaces for three different datasets. The face recognition task is performed using a similarity score based on the inverse Euclidean distance for the first two datasets and using a nerual network in the third case. All the results are compared to the case where standard PCA is used. These accuracy results show that gaPCA represents a viable alternative to the classical statistical approach for computing the principal components.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于特征脸、几何PCA逼近和神经网络的人脸识别
当人脸被视为一个多维视觉模型时,它表现出高度的复杂性,导致人脸识别系统需要困难和大量的计算来编码和解码人脸图像。在这方面,一种行之有效的方法是基于使用主成分分析(PCA)进行特征提取和人脸识别,称为特征脸方法。该方法虽然具有较好的识别率,但由于PCA算法的复杂性,存在计算量大的缺点。在本文中,我们使用几何近似PCA (gaPCA)算法来计算三种不同数据集的特征面。人脸识别任务对前两个数据集使用基于反欧几里得距离的相似性评分,对第三个数据集使用神经网络。将所有结果与使用标准PCA的情况进行比较。这些精度结果表明,gaPCA是计算主成分的一种可行的替代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhancement of Beat Tracking in String Quartet Music Analysis Based on the Teager-Kaiser Energy Operator Smart Speaker: Suspicious Event Detection with Reverse Mode Speakers Supervised Learning in Multi-Agent Environments Using Inverse Point of View Evaluation of Layer 3 Multipath Solutions using Container Technologies Detecting Cluster Synchronization in Chaotic Dynamic Networks via Information Theoretic Measures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1