Model design to look for patterns related to suicide in social networks

Lizethe Guadalupe Reyna-Morán, F. Luna-Rosas, Gricelda Medina-Veloz
{"title":"Model design to look for patterns related to suicide in social networks","authors":"Lizethe Guadalupe Reyna-Morán, F. Luna-Rosas, Gricelda Medina-Veloz","doi":"10.35429/jitc.2022.16.6.1.13","DOIUrl":null,"url":null,"abstract":"Many people with suicidal ideation use social forum platforms to post or discuss information about this complex topic. The key objective of our study is to design and evaluate a model to find patterns linguistically related to suicide. We address the detection of suicidal ideation through machine learning by applying it to the social network Twitter. To do this, we use different linguistic processors to obtain characteristics of each tweet and then catalog them using unsupervised classifiers. Finally, this information is used by 7 types of supervised learning (Naive Bayes, KNN, MLP, SVM, Decision Tree, Adaboost y Random Forest) and perform a comparative analysis of the classifiers using evaluation parameters, mainly accuracy. Our experiment shows 42 classification results, as well as sequential and parallel processing time data from the best-supervised machine learning, Random Forest.","PeriodicalId":143010,"journal":{"name":"Revista Tecnologías de la Información y Comunicaciones","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Tecnologías de la Información y Comunicaciones","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35429/jitc.2022.16.6.1.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Many people with suicidal ideation use social forum platforms to post or discuss information about this complex topic. The key objective of our study is to design and evaluate a model to find patterns linguistically related to suicide. We address the detection of suicidal ideation through machine learning by applying it to the social network Twitter. To do this, we use different linguistic processors to obtain characteristics of each tweet and then catalog them using unsupervised classifiers. Finally, this information is used by 7 types of supervised learning (Naive Bayes, KNN, MLP, SVM, Decision Tree, Adaboost y Random Forest) and perform a comparative analysis of the classifiers using evaluation parameters, mainly accuracy. Our experiment shows 42 classification results, as well as sequential and parallel processing time data from the best-supervised machine learning, Random Forest.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在社交网络中寻找自杀模式的模型设计
许多有自杀想法的人使用社交论坛平台发布或讨论有关这个复杂话题的信息。我们研究的主要目的是设计和评估一个模型,以发现与自杀有关的语言模式。我们通过将机器学习应用于社交网络Twitter来解决自杀意念的检测问题。为了做到这一点,我们使用不同的语言处理器来获取每条推文的特征,然后使用无监督分类器对它们进行分类。最后,将这些信息用于7种监督学习(Naive Bayes, KNN, MLP, SVM, Decision Tree, Adaboost y Random Forest),并使用评估参数(主要是准确率)对分类器进行比较分析。我们的实验显示了42个分类结果,以及来自最佳监督机器学习随机森林的顺序和并行处理时间数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tools to enable communication between sensor devices Process of staff activities National Electoral Institute in electoral jorganda A didactic tool for updating the teaching-learning process of English as a foreign language Model design to look for patterns related to suicide in social networks The experience of using virtual mobility, as a window to approach knowledge in the field of physics, among students of the Universidad Tecnológica de Bolívar (Colombia), Universidad Nacional de San Luis (Argentina) and the Universidad Tecnológica de Jalisco (Mexico)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1