S. Omatu, T. Fujinaka, T. Kosaka, H. Yanagimoto, M. Yoshioka
{"title":"Italian Lira classification by LVQ","authors":"S. Omatu, T. Fujinaka, T. Kosaka, H. Yanagimoto, M. Yoshioka","doi":"10.1109/IJCNN.2001.938846","DOIUrl":null,"url":null,"abstract":"In this paper, a new method to classify the Italian Liras by using the learning vector quantization (LVQ) is proposed. The Italian Liras of 8 kinds, 1000, 2000, 5000, 10000, 50000 (new), 50000 (old), 100000 (new), 100000 (old) Liras with four directions A,B,C, and D are used, where A and B mean the normal direction and the upside down direction and C and D mean the reverse version of A and B. The original image with 128 by 64 pixels is observed at the transaction machine in which rotation and shift are included. After correction of these effects, we select a suitable area which shows the bill image and feed the image with 64 by 15 pixels to a neural network. Although the neural network of the LVQ type can process in any order of the dimension of the input data, the smaller size is better to achieve a faster convergence.","PeriodicalId":346955,"journal":{"name":"IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222)","volume":"195 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2001.938846","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
In this paper, a new method to classify the Italian Liras by using the learning vector quantization (LVQ) is proposed. The Italian Liras of 8 kinds, 1000, 2000, 5000, 10000, 50000 (new), 50000 (old), 100000 (new), 100000 (old) Liras with four directions A,B,C, and D are used, where A and B mean the normal direction and the upside down direction and C and D mean the reverse version of A and B. The original image with 128 by 64 pixels is observed at the transaction machine in which rotation and shift are included. After correction of these effects, we select a suitable area which shows the bill image and feed the image with 64 by 15 pixels to a neural network. Although the neural network of the LVQ type can process in any order of the dimension of the input data, the smaller size is better to achieve a faster convergence.