Corporate Financial Distress Diagnosis in China : Empirical Analysis Using Credit Scoring Models

Q. Liang
{"title":"Corporate Financial Distress Diagnosis in China : Empirical Analysis Using Credit Scoring Models","authors":"Q. Liang","doi":"10.15057/4854","DOIUrl":null,"url":null,"abstract":"Corporate performance is undoubtedly of great interests to the owners, managers, creditors and regulatory institutions. This study attempts to extend and improve upon the prior studies in China, particularly in its greater sample size and comparative analysis between MDA and logistic regression analysis in the financial distress prediction. Empirical results show that logistic regression analysis has relatively higher prediction accuracy and lower Type I & II errors. Together with its great flexibilities and e$cient combination of data from both financial statements and capital market prices, logistic regression analysis is considered as the best technique to classify and predict financial distress of listed companies in nowadays China.","PeriodicalId":154016,"journal":{"name":"Hitotsubashi journal of commerce and management","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hitotsubashi journal of commerce and management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15057/4854","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Corporate performance is undoubtedly of great interests to the owners, managers, creditors and regulatory institutions. This study attempts to extend and improve upon the prior studies in China, particularly in its greater sample size and comparative analysis between MDA and logistic regression analysis in the financial distress prediction. Empirical results show that logistic regression analysis has relatively higher prediction accuracy and lower Type I & II errors. Together with its great flexibilities and e$cient combination of data from both financial statements and capital market prices, logistic regression analysis is considered as the best technique to classify and predict financial distress of listed companies in nowadays China.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
中国企业财务困境诊断:基于信用评分模型的实证分析
公司绩效无疑关系到所有者、管理者、债权人和监管机构的切身利益。本研究试图在国内已有研究的基础上进行延伸和完善,特别是样本量的扩大以及MDA与logistic回归分析在财务困境预测中的对比分析。实证结果表明,logistic回归分析具有较高的预测精度和较低的I型和II型误差。由于逻辑回归分析具有很大的灵活性,并且能够有效地结合财务报表和资本市场价格数据,因此被认为是目前中国上市公司财务困境分类和预测的最佳方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Approach to Modeling on Financial Time Series Data with Regime Shifts Prioritizing Public Interest: The Essence of Shibusawa's Doctrine and Its Implications for the Re-invention of Capitalism The Cyclical Patterns of Capital Buffers: Evidence from Japanese Banks Produktions- und kostentheoretische Fundierung der Kostenrechnung der Servicefunktionen The Luxury Watches as Double-Storied Symbol System: Brand Historicity in Ahistorical China
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1