Mohammad Hosein Hamian, Ali Beikmohammadi, A. Ahmadi, B. Nasersharif
{"title":"Semantic Segmentation of Autonomous Driving Images by the Combination of Deep Learning and Classical Segmentation","authors":"Mohammad Hosein Hamian, Ali Beikmohammadi, A. Ahmadi, B. Nasersharif","doi":"10.1109/CSICC52343.2021.9420573","DOIUrl":null,"url":null,"abstract":"One of the bold issues in autonomous driving is considered semantic image segmentation, which must be done with high accuracy and speed. Semantic segmentation is used to understand an image at the pixel level. In this regard, various architectures based on deep neural networks have been proposed for semantic segmentation of autonomous driving image datasets. In this paper, we proposed a novel combination method in which dividing the image into its constituent regions with the help of classical segmentation brings about achieving beneficial information that improves the DeepLab v3+ network results. The proposed method with the two backbones, Xception and MobileNetV2, obtains the mIoU of 81.73% and 76.31% on the Cityscapes dataset, respectively, which shows promising results compared to the model without post-processing.","PeriodicalId":374593,"journal":{"name":"2021 26th International Computer Conference, Computer Society of Iran (CSICC)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 26th International Computer Conference, Computer Society of Iran (CSICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSICC52343.2021.9420573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
One of the bold issues in autonomous driving is considered semantic image segmentation, which must be done with high accuracy and speed. Semantic segmentation is used to understand an image at the pixel level. In this regard, various architectures based on deep neural networks have been proposed for semantic segmentation of autonomous driving image datasets. In this paper, we proposed a novel combination method in which dividing the image into its constituent regions with the help of classical segmentation brings about achieving beneficial information that improves the DeepLab v3+ network results. The proposed method with the two backbones, Xception and MobileNetV2, obtains the mIoU of 81.73% and 76.31% on the Cityscapes dataset, respectively, which shows promising results compared to the model without post-processing.