A new model of neural associative memories

J. Hao, J. Vandewalle
{"title":"A new model of neural associative memories","authors":"J. Hao, J. Vandewalle","doi":"10.1109/IJCNN.1992.227013","DOIUrl":null,"url":null,"abstract":"A novel model of discrete neural associative memories is presented. The most important feature of this model is that static mapping instead of the dynamic convergent process is used to retrieve the stored messages. The model features a two-layer structure, with feedforward connections only and using two kinds of neurons. This model uses an extremely simple weight set-up rule and all the resulting weights can only be -1 or +1. Compared to the Hopfield model, the model can guarantee all the given patterns to be stored as fixed points. Each fixed point is surrounded by an attraction ball with the maximum possible radius. The processing speed is much higher because of the use of layered feedforward nets. The model is flexible in the sense that extra patterns can be easily incorporated into the established net.<<ETX>>","PeriodicalId":286849,"journal":{"name":"[Proceedings 1992] IJCNN International Joint Conference on Neural Networks","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Proceedings 1992] IJCNN International Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.1992.227013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

A novel model of discrete neural associative memories is presented. The most important feature of this model is that static mapping instead of the dynamic convergent process is used to retrieve the stored messages. The model features a two-layer structure, with feedforward connections only and using two kinds of neurons. This model uses an extremely simple weight set-up rule and all the resulting weights can only be -1 or +1. Compared to the Hopfield model, the model can guarantee all the given patterns to be stored as fixed points. Each fixed point is surrounded by an attraction ball with the maximum possible radius. The processing speed is much higher because of the use of layered feedforward nets. The model is flexible in the sense that extra patterns can be easily incorporated into the established net.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种新的神经联想记忆模型
提出了一种新的离散神经联想记忆模型。该模型最重要的特征是使用静态映射而不是动态收敛过程来检索存储的消息。该模型具有两层结构,仅具有前馈连接,并使用两种神经元。这个模型使用一个非常简单的权重设置规则,所有的结果权重只能是-1或+1。与Hopfield模型相比,该模型可以保证所有给定的模式都以不动点的形式存储。每个固定点周围都有一个半径最大的吸引球。由于采用了分层前馈网络,处理速度大大提高。该模型是灵活的,因为额外的模式可以很容易地合并到已建立的网络中
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Nonlinear system identification using diagonal recurrent neural networks Why error measures are sub-optimal for training neural network pattern classifiers Fuzzy clustering using fuzzy competitive learning networks Design and development of a real-time neural processor using the Intel 80170NX ETANN Precision analysis of stochastic pulse encoding algorithms for neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1