Segmentation of cell nuclei in 3D microscopy images based on level set deformable models and convex minimization

Jan-Philip Bergeest, K. Rohr
{"title":"Segmentation of cell nuclei in 3D microscopy images based on level set deformable models and convex minimization","authors":"Jan-Philip Bergeest, K. Rohr","doi":"10.1109/ISBI.2014.6867951","DOIUrl":null,"url":null,"abstract":"Accurate and efficient segmentation of cell nuclei in 3D fluorescence microscopy images is important for the quantification of cellular processes. We propose a new 3D segmentation approach for cell nuclei which is based on level set deformable models and convex minimization. Our approach employs different convex energy functionals, uses an efficient numeric method for minimization, and integrates a scheme for cell splitting. Compared to previous level set approaches for 3D cell microscopy images, our approach determines global solutions. The performance of our approach has been evaluated using in vivo 3D fluorescence microscopy images. We have also performed a quantitative comparison with previous 3D segmentation approaches.","PeriodicalId":440405,"journal":{"name":"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2014.6867951","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Accurate and efficient segmentation of cell nuclei in 3D fluorescence microscopy images is important for the quantification of cellular processes. We propose a new 3D segmentation approach for cell nuclei which is based on level set deformable models and convex minimization. Our approach employs different convex energy functionals, uses an efficient numeric method for minimization, and integrates a scheme for cell splitting. Compared to previous level set approaches for 3D cell microscopy images, our approach determines global solutions. The performance of our approach has been evaluated using in vivo 3D fluorescence microscopy images. We have also performed a quantitative comparison with previous 3D segmentation approaches.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于水平集变形模型和凸最小化的三维显微图像细胞核分割
在三维荧光显微镜图像中准确有效地分割细胞核对于细胞过程的定量是很重要的。提出了一种基于水平集可变形模型和凸最小化的细胞核三维分割方法。我们的方法采用不同的凸能量函数,使用有效的数值方法进行最小化,并集成了一个单元分裂方案。与之前3D细胞显微镜图像的水平集方法相比,我们的方法确定了全局解决方案。我们的方法的性能已经使用体内三维荧光显微镜图像进行了评估。我们还与以前的3D分割方法进行了定量比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MRI based attenuation correction for PET/MRI via MRF segmentation and sparse regression estimated CT DTI-DeformIt: Generating ground-truth validation data for diffusion tensor image analysis tasks Functional parcellation of the hippocampus by clustering resting state fMRI signals Detecting cell assembly interaction patterns via Bayesian based change-point detection and graph inference model Topological texture-based method for mass detection in breast ultrasound image
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1