Determination and modelling of the particle size dependent residence time distribution in a pilot plant spray dryer

Nora Alina Ruprecht, R. Kohlus
{"title":"Determination and modelling of the particle size dependent residence time distribution in a pilot plant spray dryer","authors":"Nora Alina Ruprecht, R. Kohlus","doi":"10.4995/IDS2018.2018.7740","DOIUrl":null,"url":null,"abstract":"The residence time distribution (RTD) in a pilot plant spray dryer was characterised for two kinds of air distributors (centrifugal and parallel flow) and for different atomizing air pressures. To determine the RTD - and the RTD of different particle size fractions - the particle concentration and size at the dryer outlet was measured continuously using a particle counter. Results were modelled using the Bodenstein number and the CSTR in series model. An increasing nozzle pressure leads to a decrease in mean residence time and a more narrow distribution. The influence of nozzle pressure is more pronounced than of air distributor and particle size fraction. Keywords: Residence time distribution; Particle size; Bodenstein number modelling; Nozzle influence; Mechanism of air distribution ","PeriodicalId":107148,"journal":{"name":"Proceedings of 21th International Drying Symposium","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 21th International Drying Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4995/IDS2018.2018.7740","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The residence time distribution (RTD) in a pilot plant spray dryer was characterised for two kinds of air distributors (centrifugal and parallel flow) and for different atomizing air pressures. To determine the RTD - and the RTD of different particle size fractions - the particle concentration and size at the dryer outlet was measured continuously using a particle counter. Results were modelled using the Bodenstein number and the CSTR in series model. An increasing nozzle pressure leads to a decrease in mean residence time and a more narrow distribution. The influence of nozzle pressure is more pronounced than of air distributor and particle size fraction. Keywords: Residence time distribution; Particle size; Bodenstein number modelling; Nozzle influence; Mechanism of air distribution 
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
试验装置喷雾干燥机中颗粒大小依赖停留时间分布的测定和建模
对两种气流分布器(离心式和平行流)及不同雾化空气压力下喷雾干燥机的停留时间分布进行了研究。为了确定RTD -和不同粒度的分数的RTD -颗粒浓度和大小在干燥机出口连续测量使用颗粒计数器。采用Bodenstein数和CSTR序列模型对结果进行建模。喷嘴压力的增大导致平均停留时间的减小和分布的缩小。喷嘴压力的影响比气流分布器和粒径分数的影响更明显。关键词:停留时间分布;颗粒大小;博登斯坦数建模;喷嘴的影响;配气机理
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Theoretical and experimental investigation of temperature and moisture distributions and changes in nutritional quality during Intermittent Microwave Convective Drying Assessment of the conditions of the thermoplastic extrusion process in the bioactive and mechanical properties of flexible films based on starch and Brazilian pepper Description of atmospheric freeze-drying of brown seaweeds (Saccherina Latissima) with respect to thermal properties and phase transitions Evaluation of Izmir Tulum cheese pieces by drying with tray drier at different air flow rates and temperatures The infrared radiation and vacuum assisted drying kinetics of flue-cured tobacco leaf and its drying quality analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1