Automating Design For Yield: Silicon Learning to Predictive Models and Design Optimization

S. Venkataraman, Pongpachara Limpisathian, P. Meinerzhagen, S. Natarajan, Eric Yang
{"title":"Automating Design For Yield: Silicon Learning to Predictive Models and Design Optimization","authors":"S. Venkataraman, Pongpachara Limpisathian, P. Meinerzhagen, S. Natarajan, Eric Yang","doi":"10.1109/ITC44778.2020.9325263","DOIUrl":null,"url":null,"abstract":"We propose a framework to co-optimize Yield along with Power, Performance and Area (PPA) through the design flow from logic synthesis through placement and routing (APR). We accomplish this by learning from silicon using a combination of test/diagnosis, inline/metrology and Failure Analysis (FA) results to create predictive models using Machine Learning (ML) techniques that are then used during design. Simulation results across three different CPU and Graphics cores show promising results with projected yield improvements of 11-17% with no area and performance / timing penalty with respect to design targets but with tradeoffs to both static and dynamic power. Better joint exploration of the PPA space along with yield indicates it is possible to recover yield with close to iso-PPA with respect to design targets. Pre-silicon results show $\\sim 10.4$% yield increase with iso-area and -iso-performance and $\\sim 1$% power penalty on a processor core.","PeriodicalId":251504,"journal":{"name":"2020 IEEE International Test Conference (ITC)","volume":"186 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Test Conference (ITC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITC44778.2020.9325263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We propose a framework to co-optimize Yield along with Power, Performance and Area (PPA) through the design flow from logic synthesis through placement and routing (APR). We accomplish this by learning from silicon using a combination of test/diagnosis, inline/metrology and Failure Analysis (FA) results to create predictive models using Machine Learning (ML) techniques that are then used during design. Simulation results across three different CPU and Graphics cores show promising results with projected yield improvements of 11-17% with no area and performance / timing penalty with respect to design targets but with tradeoffs to both static and dynamic power. Better joint exploration of the PPA space along with yield indicates it is possible to recover yield with close to iso-PPA with respect to design targets. Pre-silicon results show $\sim 10.4$% yield increase with iso-area and -iso-performance and $\sim 1$% power penalty on a processor core.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自动化设计为产量:硅学习预测模型和设计优化
我们提出了一个框架,通过从逻辑合成到放置和路由(APR)的设计流程,共同优化良率以及功率、性能和面积(PPA)。我们通过结合测试/诊断、内联/计量和故障分析(FA)结果从硅中学习,使用机器学习(ML)技术创建预测模型,然后在设计过程中使用,从而实现这一目标。在三种不同的CPU和图形核心上的模拟结果显示出有希望的结果,预计产量提高了11-17%,没有设计目标的面积和性能/时间损失,但在静态和动态功率方面都有权衡。更好地联合探索PPA空间和产率,表明有可能在接近设计目标的iso-PPA的情况下恢复产率。预硅的结果表明,在同等面积和同等性能下,产率提高了10.4%,而处理器核心的功耗降低了1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modeling Accuracy of Wideband Power Amplifiers with Memory effects via Measurements Automated Assertion Generation from Natural Language Specifications Characterization, Modeling and Test of Synthetic Anti-Ferromagnet Flip Defect in STT-MRAMs Fast Bring-Up of an AI SoC through IEEE 1687 Integrating Embedded TAPs and IEEE 1500 Interfaces Methods for Susceptibility Analysis of Logic Gates in the Presence of Single Event Transients
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1