A novel Si-Tunnel FET based SRAM design for ultra low-power 0.3V VDD applications

Jawar Singh, K. Ramakrishnan, S. Mookerjea, S. Datta, N. Vijaykrishnan, D. Pradhan
{"title":"A novel Si-Tunnel FET based SRAM design for ultra low-power 0.3V VDD applications","authors":"Jawar Singh, K. Ramakrishnan, S. Mookerjea, S. Datta, N. Vijaykrishnan, D. Pradhan","doi":"10.1109/ASPDAC.2010.5419897","DOIUrl":null,"url":null,"abstract":"Steep sub-threshold transistors are promising candidates to replace the traditional MOSFETs for sub-threshold leakage reduction. In this paper, we explore the use of Inter-Band Tunnel Field Effect Transistors (TFETs) in SRAMs at ultra low supply voltages. The uni-directional current conducting TFETs limit the viability of 6T SRAM cells. To overcome this limitation, 7T SRAM designs were proposed earlier at the cost of extra silicon area. In this paper, we propose a novel 6T SRAM design using Si-TFETs for reliable operation with low leakage at ultra low voltages. We also demonstrate that a functional 6T TFET SRAM design with comparable stability margins and faster performances at low voltages can be realized using proposed design when compared with the 7T TFET SRAM cell. We achieve a leakage reduction improvement of 700X and 1600X over traditional CMOS SRAM designs at VDD of 0.3V and 0.5V respectively which makes it suitable for use at ultra-low power applications.","PeriodicalId":152569,"journal":{"name":"2010 15th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"148 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"90","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 15th Asia and South Pacific Design Automation Conference (ASP-DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASPDAC.2010.5419897","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 90

Abstract

Steep sub-threshold transistors are promising candidates to replace the traditional MOSFETs for sub-threshold leakage reduction. In this paper, we explore the use of Inter-Band Tunnel Field Effect Transistors (TFETs) in SRAMs at ultra low supply voltages. The uni-directional current conducting TFETs limit the viability of 6T SRAM cells. To overcome this limitation, 7T SRAM designs were proposed earlier at the cost of extra silicon area. In this paper, we propose a novel 6T SRAM design using Si-TFETs for reliable operation with low leakage at ultra low voltages. We also demonstrate that a functional 6T TFET SRAM design with comparable stability margins and faster performances at low voltages can be realized using proposed design when compared with the 7T TFET SRAM cell. We achieve a leakage reduction improvement of 700X and 1600X over traditional CMOS SRAM designs at VDD of 0.3V and 0.5V respectively which makes it suitable for use at ultra-low power applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种新颖的基于硅隧道场效应晶体管的SRAM设计,用于超低功耗0.3V VDD应用
陡峭亚阈值晶体管是取代传统mosfet降低亚阈值泄漏的有希望的候选器件。在本文中,我们探索了在超低电源电压下在sram中使用带间隧道场效应晶体管(tfet)。单向导电tfet限制了6T SRAM电池的生存能力。为了克服这一限制,早期提出了7T SRAM设计,但代价是额外的硅面积。在本文中,我们提出了一种新的6T SRAM设计,该设计使用si - tfet在超低电压下可靠地工作,并且具有低泄漏。我们还证明,与7T TFET SRAM单元相比,使用所提出的设计可以实现具有相当稳定裕度和低电压下更快性能的功能性6T TFET SRAM设计。在VDD分别为0.3V和0.5V时,我们实现了比传统CMOS SRAM设计减少700X和1600X的漏损,这使得它适合用于超低功耗应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Platform modeling for exploration and synthesis Application-specific 3D Network-on-Chip design using simulated allocation Rule-based optimization of reversible circuits An extension of the generalized Hamiltonian method to S-parameter descriptor systems Adaptive power management for real-time event streams
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1