Sparse-representation-based adaptive interference suppression

Yishu Shi, F. Ge, Ying Chen, Sui-ling Ren
{"title":"Sparse-representation-based adaptive interference suppression","authors":"Yishu Shi, F. Ge, Ying Chen, Sui-ling Ren","doi":"10.23919/OCEANS.2015.7401918","DOIUrl":null,"url":null,"abstract":"Passive sources localization in the presence of strong interferences is generally a difficult problem. A sparse-representation-based adaptive interference suppression (SRAIS) method is proposed in this paper for interference suppression and bearing estimation, which can reduce the power loss of the TOI signal and have more accurate direction-of-arrival (DOA) estimation, especially when the input powers of the TOI signal and the interferences are at the almost same level. Simulation and experimental results are also given.","PeriodicalId":403976,"journal":{"name":"OCEANS 2015 - MTS/IEEE Washington","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"OCEANS 2015 - MTS/IEEE Washington","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/OCEANS.2015.7401918","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Passive sources localization in the presence of strong interferences is generally a difficult problem. A sparse-representation-based adaptive interference suppression (SRAIS) method is proposed in this paper for interference suppression and bearing estimation, which can reduce the power loss of the TOI signal and have more accurate direction-of-arrival (DOA) estimation, especially when the input powers of the TOI signal and the interferences are at the almost same level. Simulation and experimental results are also given.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于稀疏表示的自适应干扰抑制
在强干扰条件下,无源源的定位通常是一个难题。本文提出了一种基于稀疏表示的自适应干扰抑制(SRAIS)方法,用于干扰抑制和方位估计,特别是当TOI信号的输入功率与干扰的输入功率几乎相同时,该方法可以降低TOI信号的功率损失,获得更准确的DOA估计。并给出了仿真和实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Integration of a RSI microstructure sensing package into a Seaglider Capacity analysis for broadband communications on sea A methodology to improve the assessment of vulnerability on the maritime supply chain of energy Detection of false AIS messages for the improvement of maritime situational awareness Automated point cloud correspondence detection for underwater mapping using AUVs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1