The Impact of CLOD Load Model Parameters on Dynamic Simulation of Large Power Systems

A. S. Hoshyarzadeh, H. Zareipour, P. Keung, Syed Sabbir Ahmed
{"title":"The Impact of CLOD Load Model Parameters on Dynamic Simulation of Large Power Systems","authors":"A. S. Hoshyarzadeh, H. Zareipour, P. Keung, Syed Sabbir Ahmed","doi":"10.1109/EEEIC.2019.8783527","DOIUrl":null,"url":null,"abstract":"The objective of this paper is to explore how optimal load model parameters impact the results of dynamic simulations in power systems. We focus on identifying the parameters for CLOD composite models that are widely used in power industry to represent major loads in dynamic simulations. This model accounts for the diversity of load components by representing a variety of elements, including large and small motors and static loads. We use evolutionary-based optimization methods to minimize the error between PMU measurements and dynamic PSS/E simulations for fault-induced voltage events. We compare the simulations results obtained using optimized load models with those of generic models that are often used in the industry. We provide simulation results based on real-life data from Alberta’s electrical power system.","PeriodicalId":422977,"journal":{"name":"2019 IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe)","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EEEIC.2019.8783527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The objective of this paper is to explore how optimal load model parameters impact the results of dynamic simulations in power systems. We focus on identifying the parameters for CLOD composite models that are widely used in power industry to represent major loads in dynamic simulations. This model accounts for the diversity of load components by representing a variety of elements, including large and small motors and static loads. We use evolutionary-based optimization methods to minimize the error between PMU measurements and dynamic PSS/E simulations for fault-induced voltage events. We compare the simulations results obtained using optimized load models with those of generic models that are often used in the industry. We provide simulation results based on real-life data from Alberta’s electrical power system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CLOD负荷模型参数对大型电力系统动态仿真的影响
本文的目的是探讨最优负荷模型参数对电力系统动态仿真结果的影响。我们的重点是确定在电力工业中广泛使用的CLOD复合模型的参数,以表示动态仿真中的主要负载。该模型通过表示各种元素(包括大型和小型电机和静态负载)来说明负载组件的多样性。我们使用基于进化的优化方法来最小化PMU测量值与故障感应电压事件动态PSS/E模拟之间的误差。将优化负荷模型的仿真结果与工业上常用的一般负荷模型的仿真结果进行了比较。我们提供了基于阿尔伯塔电力系统真实数据的模拟结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Agile Development Process and User-centric Data Driven Design for an Integrated Energy System Machine Learning for Agile and Self-Adaptive Congestion Management in Active Distribution Networks Full Bridge LLC Resonant Three-Phase Interleaved Multi Converter For HV Applications Standalone PV-BES-DG Based Microgrid with Power Quality Improvements Performance of Neural Network Based Controllers and ΔΣ-Based PID Controllers for Networked Control Systems: A Comparative Investigation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1