Popularity-Enhanced News Recommendation with Multi-View Interest Representation

Jingkun Wang, Yipu Chen, Zichun Wang, Wen Zhao
{"title":"Popularity-Enhanced News Recommendation with Multi-View Interest Representation","authors":"Jingkun Wang, Yipu Chen, Zichun Wang, Wen Zhao","doi":"10.1145/3459637.3482462","DOIUrl":null,"url":null,"abstract":"News recommendation is of vital importance to alleviating in-formation overload. Recent research shows that precise modeling of news content and user interests become critical for news rec-ommendation. Existing methods usually utilize information such as news title, abstract, entities to predict Click Through Rate(CTR) or add some auxiliary tasks to a multi-task learning framework. However, none of them directly consider predicted news popularity and the degree of users' attention to popular news into the CTR prediction results. Meanwhile, multiple inter-ests may arise throughout users' browsing history. Thus it is hard to represent user interests via a single user vector. In this paper, we propose PENR, a Popularity-Enhanced News Recommenda-tion method, which integrates popularity prediction task to im-prove the performance of the news encoder. News popularity score is predicted and added to the final CTR, while news popu-larity is utilized to model the degree of users' tendency to follow hot news. Moreover, user interests are modeled from different perspectives via a subspace projection method that assembles the browsing history to multiple subspaces. In this way, we capture users' multi-view interest representations. Experiments on a real-world dataset validate the effectiveness of our PENR approach.","PeriodicalId":405296,"journal":{"name":"Proceedings of the 30th ACM International Conference on Information & Knowledge Management","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 30th ACM International Conference on Information & Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3459637.3482462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

News recommendation is of vital importance to alleviating in-formation overload. Recent research shows that precise modeling of news content and user interests become critical for news rec-ommendation. Existing methods usually utilize information such as news title, abstract, entities to predict Click Through Rate(CTR) or add some auxiliary tasks to a multi-task learning framework. However, none of them directly consider predicted news popularity and the degree of users' attention to popular news into the CTR prediction results. Meanwhile, multiple inter-ests may arise throughout users' browsing history. Thus it is hard to represent user interests via a single user vector. In this paper, we propose PENR, a Popularity-Enhanced News Recommenda-tion method, which integrates popularity prediction task to im-prove the performance of the news encoder. News popularity score is predicted and added to the final CTR, while news popu-larity is utilized to model the degree of users' tendency to follow hot news. Moreover, user interests are modeled from different perspectives via a subspace projection method that assembles the browsing history to multiple subspaces. In this way, we capture users' multi-view interest representations. Experiments on a real-world dataset validate the effectiveness of our PENR approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多视角兴趣表示的人气增强新闻推荐
新闻推荐对于缓解信息过载至关重要。最近的研究表明,新闻内容和用户兴趣的精确建模对新闻推荐至关重要。现有的方法通常利用新闻标题、摘要、实体等信息来预测点击率(CTR),或者在多任务学习框架中添加一些辅助任务。但是,它们都没有将预测的新闻热度和用户对热门新闻的关注程度直接考虑到CTR预测结果中。同时,在用户的浏览历史中可能会出现多种兴趣。因此,很难通过单个用户向量来表示用户兴趣。在本文中,我们提出了一种名为PENR的流行度增强新闻推荐方法,该方法集成了流行度预测任务来提高新闻编码器的性能。预测新闻流行度得分并将其添加到最终的点击率中,而新闻流行度则用来模拟用户关注热点新闻的倾向程度。此外,通过子空间投影方法从不同角度对用户兴趣进行建模,该方法将浏览历史组合到多个子空间中。通过这种方式,我们捕获了用户的多视图兴趣表示。在真实数据集上的实验验证了我们的PENR方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
UltraGCN Fine and Coarse Granular Argument Classification before Clustering CHASE Crawler Detection in Location-Based Services Using Attributed Action Net Failure Prediction for Large-scale Water Pipe Networks Using GNN and Temporal Failure Series
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1