Ziquan Yu, You-min Zhang, Y. Qu, C. Su, Yintao Zhang, Zhewen Xing
{"title":"Fault-Tolerant Adaptive Neural Control of Multi-UAVs Against Actuator Faults","authors":"Ziquan Yu, You-min Zhang, Y. Qu, C. Su, Yintao Zhang, Zhewen Xing","doi":"10.1109/ICUAS.2019.8798328","DOIUrl":null,"url":null,"abstract":"This paper is concerned with the fault-tolerant cooperative control (FTCC) problem of multiple unmanned aerial vehicles (multi-UAVs) in the communication network. By exploiting neural network (NN) to approximate the nonlinear terms existing in the highly nonlinear multi-UAVs system, a distributed neural adaptive control scheme is proposed when only a subset of follower UAVs has access to the leader UAV’s states. To solve the problem of “explosion of complexity” in traditional backstepping architecture and reduce the number of online updating parameters of NN, dynamic surface control (DSC) and minimal learning parameter techniques are employed to reduce the computational complexity. Furthermore, by combining graph theory and Lyapunov approach, it is proved that velocities and altitudes of all follower UAVs can track the velocity and altitude of the leader UAV. Finally, simulation results are presented to verify the effectiveness of the proposed control scheme.","PeriodicalId":426616,"journal":{"name":"2019 International Conference on Unmanned Aircraft Systems (ICUAS)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Unmanned Aircraft Systems (ICUAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICUAS.2019.8798328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
This paper is concerned with the fault-tolerant cooperative control (FTCC) problem of multiple unmanned aerial vehicles (multi-UAVs) in the communication network. By exploiting neural network (NN) to approximate the nonlinear terms existing in the highly nonlinear multi-UAVs system, a distributed neural adaptive control scheme is proposed when only a subset of follower UAVs has access to the leader UAV’s states. To solve the problem of “explosion of complexity” in traditional backstepping architecture and reduce the number of online updating parameters of NN, dynamic surface control (DSC) and minimal learning parameter techniques are employed to reduce the computational complexity. Furthermore, by combining graph theory and Lyapunov approach, it is proved that velocities and altitudes of all follower UAVs can track the velocity and altitude of the leader UAV. Finally, simulation results are presented to verify the effectiveness of the proposed control scheme.