Qinsi Wang, Nataša Miškov-Živanov, C. Telmer, E. Clarke
{"title":"Formal Analysis Provides Parameters for Guiding Hyperoxidation in Bacteria using Phototoxic Proteins","authors":"Qinsi Wang, Nataša Miškov-Živanov, C. Telmer, E. Clarke","doi":"10.1145/2742060.2743762","DOIUrl":null,"url":null,"abstract":"In this work, we developed a methodology to analyze a bacteria model that mimics the stages through which bacteria change when phage therapy is applied. Due to the widespread misuse and overuse of antibiotics, drug resistant bacteria now pose significant risks to health, agriculture and the environment. Therefore, we were interested in an alternative to conventional antibiotics, a phage therapy. Our model was designed according to an experimental procedure to engineer a temperate phage, Lambda (λ), and then kill bacteria via light-activated production of superoxide. We applied formal analysis to our model and the results show that such an approach can speed up evaluation of the system, which would be impractical or possibly not even feasible to study in a wet lab.","PeriodicalId":255133,"journal":{"name":"Proceedings of the 25th edition on Great Lakes Symposium on VLSI","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th edition on Great Lakes Symposium on VLSI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2742060.2743762","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
In this work, we developed a methodology to analyze a bacteria model that mimics the stages through which bacteria change when phage therapy is applied. Due to the widespread misuse and overuse of antibiotics, drug resistant bacteria now pose significant risks to health, agriculture and the environment. Therefore, we were interested in an alternative to conventional antibiotics, a phage therapy. Our model was designed according to an experimental procedure to engineer a temperate phage, Lambda (λ), and then kill bacteria via light-activated production of superoxide. We applied formal analysis to our model and the results show that such an approach can speed up evaluation of the system, which would be impractical or possibly not even feasible to study in a wet lab.