Evolving feature extraction algorithms for hyperspectral and fused imagery

S. Brumby, P. Pope, A. Galbraith, J. Szymanski
{"title":"Evolving feature extraction algorithms for hyperspectral and fused imagery","authors":"S. Brumby, P. Pope, A. Galbraith, J. Szymanski","doi":"10.1109/ICIF.2002.1020919","DOIUrl":null,"url":null,"abstract":"Hyperspectral imagery with moderate spatial resolution (/spl sim/30 m) presents an interesting challenge to feature extraction algorithm developers, as both spatial and spectral signatures may be required to identify the feature of interest. We describe a genetic programming software system, called GENIE, which augments the human scientist/analyst by evolving customized spatio-spectral feature extraction pipelines from training data provided via an intuitive, point-and-click interface. We describe recent work exploring geospatial feature extraction from hyperspectral imagery, and from a multi-instrument fused dataset. For hyperspectral imagery, we demonstrate our system on NASA Earth Observer 1 (EO-1) Hyperion imagery, applied to agricultural crop detection. We present an evolved pipeline, and discuss its operation. We also discuss work with multi-spectral imagery (DOE/NNSA Multispectral Thermal Imager) fused with USGS digital elevation model (DEM) data, with the application of detecting mixed conifer forest.","PeriodicalId":399150,"journal":{"name":"Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIF.2002.1020919","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Hyperspectral imagery with moderate spatial resolution (/spl sim/30 m) presents an interesting challenge to feature extraction algorithm developers, as both spatial and spectral signatures may be required to identify the feature of interest. We describe a genetic programming software system, called GENIE, which augments the human scientist/analyst by evolving customized spatio-spectral feature extraction pipelines from training data provided via an intuitive, point-and-click interface. We describe recent work exploring geospatial feature extraction from hyperspectral imagery, and from a multi-instrument fused dataset. For hyperspectral imagery, we demonstrate our system on NASA Earth Observer 1 (EO-1) Hyperion imagery, applied to agricultural crop detection. We present an evolved pipeline, and discuss its operation. We also discuss work with multi-spectral imagery (DOE/NNSA Multispectral Thermal Imager) fused with USGS digital elevation model (DEM) data, with the application of detecting mixed conifer forest.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高光谱和融合图像特征提取的进化算法
中等空间分辨率(/spl sim/30 m)的高光谱图像对特征提取算法开发人员提出了一个有趣的挑战,因为可能需要空间和光谱签名来识别感兴趣的特征。我们描述了一个称为GENIE的遗传编程软件系统,它通过直观的点击界面提供的训练数据,通过进化定制的空间光谱特征提取管道,增强了人类科学家/分析师的能力。我们描述了最近从高光谱图像和多仪器融合数据集中探索地理空间特征提取的工作。对于高光谱图像,我们在NASA地球观察者1号(EO-1) Hyperion图像上演示了我们的系统,应用于农作物检测。我们提出了一个改进的管道,并讨论了它的操作。本文还讨论了多光谱图像(DOE/NNSA多光谱热成像仪)与USGS数字高程模型(DEM)数据融合的工作,以及混合针叶林探测的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Approximating fuzzy measures by hierarchically decomposable ones Tracking and fusion for wireless sensor networks A dynamic communication model for loosely coupled hybrid tracking systems On platform-based sensor management An improved Bayes fusion algorithm with the Parzen window method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1