Class Decomposition Using K-Means and Hierarchical Clustering

Shadi Banitaan, A. B. Nassif, Mohammad Azzeh
{"title":"Class Decomposition Using K-Means and Hierarchical Clustering","authors":"Shadi Banitaan, A. B. Nassif, Mohammad Azzeh","doi":"10.1109/ICMLA.2015.169","DOIUrl":null,"url":null,"abstract":"This paper presents a clustering-based class decomposition approach to improve the performance of classifiers. Class decomposition works by dividing each class into clusters, and by relabeling instances contained by each cluster with a new class. Several case studies used class decomposition combined with linear classifiers. While there is an essential improvement in classification accuracy because of class decomposition, the most effective clustering algorithm is not obvious. The aim of this work is to investigate the effect of two clustering algorithms, K-means and hierarchical, on class decomposition. In this work, we study class decomposition when combined with the Naive Bayes classifier using four real-world datasets. Experimental results show an improvement in classification accuracy for most of the datasets when class decomposition using both K-means and hierarchical clustering is performed. The results also show that class decomposition is not suitable for all datasets.","PeriodicalId":288427,"journal":{"name":"2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2015.169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This paper presents a clustering-based class decomposition approach to improve the performance of classifiers. Class decomposition works by dividing each class into clusters, and by relabeling instances contained by each cluster with a new class. Several case studies used class decomposition combined with linear classifiers. While there is an essential improvement in classification accuracy because of class decomposition, the most effective clustering algorithm is not obvious. The aim of this work is to investigate the effect of two clustering algorithms, K-means and hierarchical, on class decomposition. In this work, we study class decomposition when combined with the Naive Bayes classifier using four real-world datasets. Experimental results show an improvement in classification accuracy for most of the datasets when class decomposition using both K-means and hierarchical clustering is performed. The results also show that class decomposition is not suitable for all datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于k均值和层次聚类的类分解
为了提高分类器的性能,提出了一种基于聚类的类分解方法。类分解的工作原理是将每个类划分为集群,并用新类重新标记每个集群中包含的实例。几个案例研究使用类分解与线性分类器相结合。虽然类分解对分类精度有本质的提高,但最有效的聚类算法并不明显。这项工作的目的是研究两种聚类算法,K-means和hierarchical对类分解的影响。在这项工作中,我们使用四个真实数据集研究类分解与朴素贝叶斯分类器相结合的情况。实验结果表明,当同时使用K-means和层次聚类进行分类分解时,大多数数据集的分类精度都有所提高。结果还表明,类分解并不适用于所有的数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Prediction of SPEI Using MLR and ANN: A Case Study for Wilsons Promontory Station in Victoria Statistical Downscaling of Climate Change Scenarios of Rainfall and Temperature over Indira Sagar Canal Command Area in Madhya Pradesh, India Lambda Consensus Clustering Time Series Prediction Based on Online Learning NewsCubeSum: A Personalized Multidimensional News Update Summarization System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1