S. Cruciani, Kaiyu Hang, Christian Smith, D. Kragic
{"title":"Dual-Arm In-Hand Manipulation Using Visual Feedback","authors":"S. Cruciani, Kaiyu Hang, Christian Smith, D. Kragic","doi":"10.1109/Humanoids43949.2019.9035058","DOIUrl":null,"url":null,"abstract":"In this work, we address the problem of executing in-hand manipulation based on visual input. Given an initial grasp, the robot has to change its grasp configuration without releasing the object. We propose a method for in-hand manipulation planning and execution based on information on the object's shape using a dual-arm robot. From the available information on the object, which can be a complete point cloud but also partial data, our method plans a sequence of rotations and translations to reconfigure the object's pose. This sequence is executed using non-prehensile pushes defined as relative motions between the two robot arms.","PeriodicalId":404758,"journal":{"name":"2019 IEEE-RAS 19th International Conference on Humanoid Robots (Humanoids)","volume":"136 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE-RAS 19th International Conference on Humanoid Robots (Humanoids)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Humanoids43949.2019.9035058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
In this work, we address the problem of executing in-hand manipulation based on visual input. Given an initial grasp, the robot has to change its grasp configuration without releasing the object. We propose a method for in-hand manipulation planning and execution based on information on the object's shape using a dual-arm robot. From the available information on the object, which can be a complete point cloud but also partial data, our method plans a sequence of rotations and translations to reconfigure the object's pose. This sequence is executed using non-prehensile pushes defined as relative motions between the two robot arms.