Medical Image Registration Algorithm Based on Compressive Sensing and Scale-Invariant Feature Transform

Y. Sa
{"title":"Medical Image Registration Algorithm Based on Compressive Sensing and Scale-Invariant Feature Transform","authors":"Y. Sa","doi":"10.1109/ICICTA.2015.140","DOIUrl":null,"url":null,"abstract":"A registration algorithm based on compressive sensing theory and SIFT(Scale-Invariant Feature Transform) is proposed. By the sparse feature representation methods, the feature vector of SIFT is extracted and the high-dimensional gradient derivative is decreased to low-dimensional sparse feature vector. Accordingly, Euclidean distance is introduced to compute the similarity and dissimilarity between feature vectors used for image registration and BBF(Best-Bin-First) data structure is used to avoid exhaustion. The experimental results show that the proposed algorithm has better performance than the traditional SIFT algorithm. Comparing with the current modified SIFT algorithms, the real-time performance of the proposed algorithm is improved obviously.","PeriodicalId":231694,"journal":{"name":"2015 8th International Conference on Intelligent Computation Technology and Automation (ICICTA)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 8th International Conference on Intelligent Computation Technology and Automation (ICICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICTA.2015.140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

A registration algorithm based on compressive sensing theory and SIFT(Scale-Invariant Feature Transform) is proposed. By the sparse feature representation methods, the feature vector of SIFT is extracted and the high-dimensional gradient derivative is decreased to low-dimensional sparse feature vector. Accordingly, Euclidean distance is introduced to compute the similarity and dissimilarity between feature vectors used for image registration and BBF(Best-Bin-First) data structure is used to avoid exhaustion. The experimental results show that the proposed algorithm has better performance than the traditional SIFT algorithm. Comparing with the current modified SIFT algorithms, the real-time performance of the proposed algorithm is improved obviously.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于压缩感知和尺度不变特征变换的医学图像配准算法
提出了一种基于压缩感知理论和SIFT(Scale-Invariant Feature Transform)的配准算法。通过稀疏特征表示方法提取SIFT特征向量,将高维梯度导数降为低维稀疏特征向量。因此,引入欧氏距离来计算图像配准所使用的特征向量之间的相似度和不相似度,并使用Best-Bin-First数据结构来避免耗尽。实验结果表明,该算法比传统的SIFT算法具有更好的性能。与现有的改进SIFT算法相比,该算法的实时性有明显提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Cloud-Based Integrated Management System for Rural Information Service Station: Architecture and Implementation A New Dynamic Authentication Captcha Based on Negotiation Between Host and Mobile Terminal for Electronic Commerce Automatical Optimal Threshold Searching Algorithm Based on Bhattacharyya Distance and Support Vector Machine Hardware Design of Fall Detection System Based on ADXL345 Sensor Non-circular Gear Modal Analysis Based on ABAQUS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1