TEDOP: A Tiny Event-Driven Neural Network Hardware Core Enabling On-Chip Spike-Driven Synaptic Plasticity

Cona Shi, Sihao Chen, Haibina Wana, Zhenaaina Zhona, P. Li, Junxian He, Tengxiao Wang, Jianyi Yu, Min Tian
{"title":"TEDOP: A Tiny Event-Driven Neural Network Hardware Core Enabling On-Chip Spike-Driven Synaptic Plasticity","authors":"Cona Shi, Sihao Chen, Haibina Wana, Zhenaaina Zhona, P. Li, Junxian He, Tengxiao Wang, Jianyi Yu, Min Tian","doi":"10.1109/ICTA56932.2022.9963064","DOIUrl":null,"url":null,"abstract":"For edge intelligent applications, this work proposes a tiny neuromorphic hardware core embedding high-speed on-chip synaptic plasticity, by adopting the proposed Temporal-Integrate neuron model and a simplified supervised spike-driven synaptic plasticity rule for on-chip learning. The proposed hardware core was prototyped on a very-low-cost Zybo Zynq-7010 FPGA device, and attained comparably high classification accuracies on many datasets (e.g. 90.4% on MNIST), with a learning and inference speed as high as 11,268 and 11,749 f $r$ ame/s, respectively, while dissipating only 39 mW power under a 250 MHz clock frequency.","PeriodicalId":325602,"journal":{"name":"2022 IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTA56932.2022.9963064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

For edge intelligent applications, this work proposes a tiny neuromorphic hardware core embedding high-speed on-chip synaptic plasticity, by adopting the proposed Temporal-Integrate neuron model and a simplified supervised spike-driven synaptic plasticity rule for on-chip learning. The proposed hardware core was prototyped on a very-low-cost Zybo Zynq-7010 FPGA device, and attained comparably high classification accuracies on many datasets (e.g. 90.4% on MNIST), with a learning and inference speed as high as 11,268 and 11,749 f $r$ ame/s, respectively, while dissipating only 39 mW power under a 250 MHz clock frequency.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TEDOP:一个微小的事件驱动的神经网络硬件核心,使芯片上的峰值驱动的突触可塑性
对于边缘智能应用,本工作提出了一个嵌入高速片上突触可塑性的微小神经形态硬件核心,采用所提出的时间集成神经元模型和简化的监督spike驱动的片上学习突触可塑性规则。所提出的硬件核心在极低成本的Zybo Zynq-7010 FPGA器件上进行了原型设计,并在许多数据集上获得了相当高的分类精度(例如在MNIST上的90.4%),学习和推理速度分别高达11,268和11,749 f $r$ ame/s,而在250 MHz时钟频率下仅消耗39 mW功率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A 4.2-to-5.6 GHz Transformer-Based PMOS-only Stacked-gm VCO in 28-nm CMOS A 0.58-pJ/bit 56-Gb/s PAM-4 Optical Receiver Frontend with an Envelope Tracker for Co-Packaged Optics in 40-nm CMOS CVD Monolayer tungsten-based PMOS Transistor with high performance at Vds = -1 V A 1000 fps Spiking Neural Network Tracking Algorithm for On-Chip Processing of Dynamic Vision Sensor Data Hardware Based RISC-V Instruction Set Randomization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1