Bayesian evolutionary algorithms for evolving neural tree models of time series data

Dong-Yeon Cho, Byoung-Tak Zhang
{"title":"Bayesian evolutionary algorithms for evolving neural tree models of time series data","authors":"Dong-Yeon Cho, Byoung-Tak Zhang","doi":"10.1109/CEC.2000.870825","DOIUrl":null,"url":null,"abstract":"Model induction plays an important role in many fields of science and engineering to analyze data. Specifically, the performance of time series prediction whose objectives are to find out the dynamics of the underlying process in given data is greatly affected by the model. Bayesian evolutionary algorithms have been proposed as a method for automatic model induction from data. We apply Bayesian evolutionary algorithms (BEAs) to evolving neural tree models of time series data. The performances of various BEAs are compared on two time series prediction problems by varying the population size and the type of variation operations. Our experimental results support that population based BEAs with unlimited crossover find good models more efficiently than single individual BEAs, parallelized individual based BEAs, and population based BEAs with limited crossover.","PeriodicalId":218136,"journal":{"name":"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2000.870825","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Model induction plays an important role in many fields of science and engineering to analyze data. Specifically, the performance of time series prediction whose objectives are to find out the dynamics of the underlying process in given data is greatly affected by the model. Bayesian evolutionary algorithms have been proposed as a method for automatic model induction from data. We apply Bayesian evolutionary algorithms (BEAs) to evolving neural tree models of time series data. The performances of various BEAs are compared on two time series prediction problems by varying the population size and the type of variation operations. Our experimental results support that population based BEAs with unlimited crossover find good models more efficiently than single individual BEAs, parallelized individual based BEAs, and population based BEAs with limited crossover.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
时间序列数据演化神经树模型的贝叶斯进化算法
模型归纳法在许多科学和工程领域的数据分析中起着重要的作用。具体来说,时间序列预测的目标是找出给定数据中底层过程的动态,其性能受模型的影响很大。贝叶斯进化算法已被提出作为一种从数据中自动归纳模型的方法。我们将贝叶斯进化算法(BEAs)应用于时间序列数据的进化神经树模型。通过改变种群大小和变异操作的类型,比较了各种BEAs在两个时间序列预测问题上的性能。实验结果表明,基于种群的无限交叉BEAs比基于单个个体的BEAs、基于并行个体的BEAs和基于种群的有限交叉BEAs更有效地找到了好的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Test-case generator TCG-2 for nonlinear parameter optimisation Accelerating multi-objective control system design using a neuro-genetic approach On the use of stochastic estimator learning automata for dynamic channel allocation in broadcast networks A hierarchical distributed genetic algorithm for image segmentation Genetic learning of multi-attribute interactions in speaker verification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1