Predictive direct yaw moment control with active steering based on polytopic linear parameter-varying model

Š. Ileš, M. Švec, P. Makarun, Josip Kir Hromatko
{"title":"Predictive direct yaw moment control with active steering based on polytopic linear parameter-varying model","authors":"Š. Ileš, M. Švec, P. Makarun, Josip Kir Hromatko","doi":"10.1109/CoDIT55151.2022.9804109","DOIUrl":null,"url":null,"abstract":"In this paper, stabilizing predictive direct yaw moment control with active steering is proposed. The prediction model used in the model predictive control algorithm is a linear time-varying (LTV) bicycle model that depends on the velocity. To ensure stability and recursive feasibility regardless of the velocity change, the LTV model is transformed into a polytopic linear parameter-varying (LPV) model using the tensor product model transformation. This model is used to offline solve the robust LQR problem and form the terminal set and terminal cost for the online optimization problem. Furthermore, the same model is used to compute a robust N -step controllable set to the terminal set. In the online optimization problem, the states of the system are constrained in this set to guarantee recursive feasibility. The proposed control algorithm is tested in simulation and experimentally on a laboratory-scale car.","PeriodicalId":185510,"journal":{"name":"2022 8th International Conference on Control, Decision and Information Technologies (CoDIT)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 8th International Conference on Control, Decision and Information Technologies (CoDIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CoDIT55151.2022.9804109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, stabilizing predictive direct yaw moment control with active steering is proposed. The prediction model used in the model predictive control algorithm is a linear time-varying (LTV) bicycle model that depends on the velocity. To ensure stability and recursive feasibility regardless of the velocity change, the LTV model is transformed into a polytopic linear parameter-varying (LPV) model using the tensor product model transformation. This model is used to offline solve the robust LQR problem and form the terminal set and terminal cost for the online optimization problem. Furthermore, the same model is used to compute a robust N -step controllable set to the terminal set. In the online optimization problem, the states of the system are constrained in this set to guarantee recursive feasibility. The proposed control algorithm is tested in simulation and experimentally on a laboratory-scale car.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多面体线性变参模型的主动转向直接偏航力矩预测控制
提出了一种基于主动转向的直接偏航力矩稳定预测控制方法。模型预测控制算法中使用的预测模型是一个依赖于速度的线性时变(LTV)自行车模型。为了保证不受速度变化影响的稳定性和递归可行性,利用张量积模型变换将LTV模型转化为多面体线性参数变化(LPV)模型。该模型用于离线求解鲁棒LQR问题,并形成在线优化问题的终端集和终端成本。此外,利用相同的模型计算了终端集的鲁棒N步可控集。在在线优化问题中,系统的状态被约束在这个集合中,以保证递归的可行性。本文提出的控制算法在实验车上进行了仿真和实验验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Identification of Human Model Parameters for the Human-Machine Control Systems Design A Dual-channel Attention Model for Optical Microscope Pollen Classification Application of Machine Learning in the producer's optimal control problem with non-stable demand Comparison Between Model-Based and Data-Based Methods for Fault Diagnosis of Railway Turnouts Improved Multi-Particle Swarm Optimization based on multi-exemplar and forgetting ability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1