Energy efficient high speed CNFET based interconnect drivers for FPGAS

K. A. Kadir, M. Hasan
{"title":"Energy efficient high speed CNFET based interconnect drivers for FPGAS","authors":"K. A. Kadir, M. Hasan","doi":"10.1109/MSPCT.2009.5164171","DOIUrl":null,"url":null,"abstract":"Carbon nanotube field effect transistors (CNFETs) are already competitive in some respects with state-of-art silicon transistors, and are promising candidates for future nano-electronic devices. The ability of CNFET for using high K-dielectric provides high insulator capacitance which improves the gate control and also lowers gate leakage. This paper proposes new energy efficient CNFETs based drivers operating in the ballistic mode, for the routing interconnects of FPGAs. HSPICE simulation based on BPTM (Berkeley predictive technology model) for 32nm channel length device at operating frequency of 500MHz shows that the scaled CNFETs drivers provides very good performance even at lower supply voltage for interconnect length of 1000um. The paper shows that the different schemes of CNFETs based optimized-drivers operating at VDD=0.3v are more energy efficient than the driver operating on VDD=0.9v","PeriodicalId":179541,"journal":{"name":"2009 International Multimedia, Signal Processing and Communication Technologies","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2009-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Multimedia, Signal Processing and Communication Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MSPCT.2009.5164171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Carbon nanotube field effect transistors (CNFETs) are already competitive in some respects with state-of-art silicon transistors, and are promising candidates for future nano-electronic devices. The ability of CNFET for using high K-dielectric provides high insulator capacitance which improves the gate control and also lowers gate leakage. This paper proposes new energy efficient CNFETs based drivers operating in the ballistic mode, for the routing interconnects of FPGAs. HSPICE simulation based on BPTM (Berkeley predictive technology model) for 32nm channel length device at operating frequency of 500MHz shows that the scaled CNFETs drivers provides very good performance even at lower supply voltage for interconnect length of 1000um. The paper shows that the different schemes of CNFETs based optimized-drivers operating at VDD=0.3v are more energy efficient than the driver operating on VDD=0.9v
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
fpga的高能效高速CNFET互连驱动器
碳纳米管场效应晶体管(cnfet)在某些方面已经与最先进的硅晶体管具有竞争力,并且是未来纳米电子器件的有希望的候选者。CNFET使用高k介电介质的能力提供了高绝缘体电容,从而改善了栅极控制并降低了栅极泄漏。本文提出了一种基于弹道模式的新型节能cnfet驱动器,用于fpga的路由互连。基于BPTM (Berkeley predictive technology model)对工作频率为500MHz的32nm通道长度器件进行了HSPICE仿真,结果表明,即使在连接长度为1000um的较低电源电压下,缩放后的cnfet驱动器也具有很好的性能。结果表明,在VDD=0.3v下工作的基于cnfet的优化驱动器的不同方案比在VDD=0.9v下工作的驱动器更节能
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An overview of advanced FPGA architectures for optimized hardware realization of computation intensive algorithms Error resilient technique for SPIHT coded color images Analysis of carbon nanotube interconnects and their comparison with Cu interconnects High input impedance SIMO versatile biquad filter Seismic signal enhancement through statistical (Wiener) approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1