CIRNO: Leveraging Capacity Interference Relationship for Dense Networks optimization

Srikant Manas Kala, V. Sathya, Winston K.G. Seah, T. B. Reddy
{"title":"CIRNO: Leveraging Capacity Interference Relationship for Dense Networks optimization","authors":"Srikant Manas Kala, V. Sathya, Winston K.G. Seah, T. B. Reddy","doi":"10.1109/WCNC45663.2020.9120777","DOIUrl":null,"url":null,"abstract":"To meet the rising data-offloading demands, IEEE 802.11-based WiFi networks have undergone consistent densification. The unlicensed spectrum has also been harnessed through LTE-WiFi coexistence. However, in dense and ultradense networks (DNs/UDNs), the network capacity is even more adversely impacted by the endemic interference. Yet, the precise nature of Capacity Interference Relationship (CIR) in DNs/UDNs and LTE-WiFi coexistence remains to be studied. Densification also exacerbates the challenges to network optimization. The conventional approaches to simplify the complex SINR-Capacity constraints lead to high convergence times in DN/UDN optimization. We investigate the CIR in dense and ultra-dense WiFi (IEEE 802. 11a) and LTE-WiFi (LTULAA) networks through real-time experiments. We then subject the empirical data to linear and polynomial regression to determine the nature of CIR and demonstrate that strong linear correlations may exist. We also study the impact of predictor variables, topology, and radio access technology on CIR. Most importantly, we propose CIRNO, a CIR-inspired network optimization approach, wherein the empirically determined CIR equation replaces the theoretically assumed SINR-Capacity constraints in optimization formulations. We evaluate CIRNO by implementing three recent works on optimization. We demonstrate the relevance of CIR and CIRNO in DNs/UDNs through a significant reduction in convergence times (by over 50%) while maintaining high accuracy (over 95%). To the best of our knowledge, this is the first work to statistically analyze CIR in DNs/UDNs and LTE-WiFi heterogeneous networks (HetNets) and to use CIR regression equations in network optimization.","PeriodicalId":415064,"journal":{"name":"2020 IEEE Wireless Communications and Networking Conference (WCNC)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Wireless Communications and Networking Conference (WCNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCNC45663.2020.9120777","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

To meet the rising data-offloading demands, IEEE 802.11-based WiFi networks have undergone consistent densification. The unlicensed spectrum has also been harnessed through LTE-WiFi coexistence. However, in dense and ultradense networks (DNs/UDNs), the network capacity is even more adversely impacted by the endemic interference. Yet, the precise nature of Capacity Interference Relationship (CIR) in DNs/UDNs and LTE-WiFi coexistence remains to be studied. Densification also exacerbates the challenges to network optimization. The conventional approaches to simplify the complex SINR-Capacity constraints lead to high convergence times in DN/UDN optimization. We investigate the CIR in dense and ultra-dense WiFi (IEEE 802. 11a) and LTE-WiFi (LTULAA) networks through real-time experiments. We then subject the empirical data to linear and polynomial regression to determine the nature of CIR and demonstrate that strong linear correlations may exist. We also study the impact of predictor variables, topology, and radio access technology on CIR. Most importantly, we propose CIRNO, a CIR-inspired network optimization approach, wherein the empirically determined CIR equation replaces the theoretically assumed SINR-Capacity constraints in optimization formulations. We evaluate CIRNO by implementing three recent works on optimization. We demonstrate the relevance of CIR and CIRNO in DNs/UDNs through a significant reduction in convergence times (by over 50%) while maintaining high accuracy (over 95%). To the best of our knowledge, this is the first work to statistically analyze CIR in DNs/UDNs and LTE-WiFi heterogeneous networks (HetNets) and to use CIR regression equations in network optimization.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于容量干扰关系的密集网络优化
为了满足日益增长的数据卸载需求,基于IEEE 802.11的WiFi网络经历了持续的致密化。未经许可的频谱也通过LTE-WiFi共存得到利用。然而,在密集和超密集网络(dn / udn)中,地方性干扰对网络容量的影响更大。然而,DNs/ udn和LTE-WiFi共存时容量干扰关系(CIR)的确切性质仍有待研究。致密化也加剧了网络优化的挑战。传统的简化复杂SINR-Capacity约束的方法导致了DN/UDN优化的高收敛时间。我们研究了密集和超密集WiFi (IEEE 802)中的CIR。11a)和LTE-WiFi (LTULAA)网络通过实时实验。然后,我们对经验数据进行线性和多项式回归,以确定CIR的性质,并证明可能存在强线性相关性。我们还研究了预测变量、拓扑结构和无线接入技术对CIR的影响。最重要的是,我们提出了CIRNO,一种基于CIR的网络优化方法,其中经验确定的CIR方程取代了优化公式中理论上假设的SINR-Capacity约束。我们通过实施三个最近的优化工作来评估CIRNO。我们通过显著减少收敛时间(超过50%),同时保持高精度(超过95%),证明了DNs/ udn中CIR和CIRNO的相关性。据我们所知,这是第一次对DNs/ udn和LTE-WiFi异构网络(HetNets)中的CIR进行统计分析,并在网络优化中使用CIR回归方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Precoding with the Assistance of Attitude Information in Millimeter Wave MIMO System Performance Analysis of Temporal Correlation in Finite-Area UAV Networks with LoS/NLoS Location-Privacy-Aware Service Migration in Mobile Edge Computing Filter Bank Multicarrier Transmission Based on the Discrete Hartley Transform Resource Allocation and Throughput Maximization in Decoupled 5G
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1