Agile Catching with Whole-Body MPC and Blackbox Policy Learning

Saminda Abeyruwan, A. Bewley, Nicholas M. Boffi, K. Choromanski, David B. D'Ambrosio, Deepali Jain, P. Sanketi, A. Shankar, Vikas Sindhwani, Sumeet Singh, J. Slotine, Stephen Tu
{"title":"Agile Catching with Whole-Body MPC and Blackbox Policy Learning","authors":"Saminda Abeyruwan, A. Bewley, Nicholas M. Boffi, K. Choromanski, David B. D'Ambrosio, Deepali Jain, P. Sanketi, A. Shankar, Vikas Sindhwani, Sumeet Singh, J. Slotine, Stephen Tu","doi":"10.48550/arXiv.2306.08205","DOIUrl":null,"url":null,"abstract":"We address a benchmark task in agile robotics: catching objects thrown at high-speed. This is a challenging task that involves tracking, intercepting, and cradling a thrown object with access only to visual observations of the object and the proprioceptive state of the robot, all within a fraction of a second. We present the relative merits of two fundamentally different solution strategies: (i) Model Predictive Control using accelerated constrained trajectory optimization, and (ii) Reinforcement Learning using zeroth-order optimization. We provide insights into various performance trade-offs including sample efficiency, sim-to-real transfer, robustness to distribution shifts, and whole-body multimodality via extensive on-hardware experiments. We conclude with proposals on fusing\"classical\"and\"learning-based\"techniques for agile robot control. Videos of our experiments may be found at https://sites.google.com/view/agile-catching","PeriodicalId":268449,"journal":{"name":"Conference on Learning for Dynamics & Control","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Learning for Dynamics & Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2306.08205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We address a benchmark task in agile robotics: catching objects thrown at high-speed. This is a challenging task that involves tracking, intercepting, and cradling a thrown object with access only to visual observations of the object and the proprioceptive state of the robot, all within a fraction of a second. We present the relative merits of two fundamentally different solution strategies: (i) Model Predictive Control using accelerated constrained trajectory optimization, and (ii) Reinforcement Learning using zeroth-order optimization. We provide insights into various performance trade-offs including sample efficiency, sim-to-real transfer, robustness to distribution shifts, and whole-body multimodality via extensive on-hardware experiments. We conclude with proposals on fusing"classical"and"learning-based"techniques for agile robot control. Videos of our experiments may be found at https://sites.google.com/view/agile-catching
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
敏捷捕获与全身MPC和黑盒策略学习
我们解决了敏捷机器人中的一个基准任务:捕捉高速抛出的物体。这是一项具有挑战性的任务,涉及跟踪,拦截和抱起投掷的物体,只能通过对物体的视觉观察和机器人的本体感觉状态,所有这些都在几分之一秒内完成。我们提出了两种根本不同的解决策略的相对优点:(i)使用加速约束轨迹优化的模型预测控制,以及(ii)使用零阶优化的强化学习。通过广泛的硬件实验,我们提供了各种性能权衡的见解,包括样本效率,模拟到真实的转移,对分布转移的鲁棒性和全身多模态。最后,我们提出了融合“经典”和“基于学习”的敏捷机器人控制技术的建议。我们的实验视频可以在https://sites.google.com/view/agile-catching上找到
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Agile Catching with Whole-Body MPC and Blackbox Policy Learning Time Dependent Inverse Optimal Control using Trigonometric Basis Functions Provably Efficient Generalized Lagrangian Policy Optimization for Safe Multi-Agent Reinforcement Learning Black-Box vs. Gray-Box: A Case Study on Learning Table Tennis Ball Trajectory Prediction with Spin and Impacts Model-based Validation as Probabilistic Inference
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1