Segmentation with a shape dictionary

Wenyang Liu, D. Ruan
{"title":"Segmentation with a shape dictionary","authors":"Wenyang Liu, D. Ruan","doi":"10.1109/ISBI.2014.6867882","DOIUrl":null,"url":null,"abstract":"Image segmentation plays an important role in many medical applications. Automatic segmentation algorithms are challenged by low SNR and significant artifacts resulting from motion and signal voids. In this study, we propose a novel level set based segmentation method with a shape dictionary. Unlike previous studies that use a single template or probabilistic models, we propose to construct a shape dictionary and model the shape prior as sparse combinations of shape templates in the dictionary. The proposed method generated promising segmentation results on low SNR MR images, even with signal voids.","PeriodicalId":440405,"journal":{"name":"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)","volume":"10 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2014.6867882","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Image segmentation plays an important role in many medical applications. Automatic segmentation algorithms are challenged by low SNR and significant artifacts resulting from motion and signal voids. In this study, we propose a novel level set based segmentation method with a shape dictionary. Unlike previous studies that use a single template or probabilistic models, we propose to construct a shape dictionary and model the shape prior as sparse combinations of shape templates in the dictionary. The proposed method generated promising segmentation results on low SNR MR images, even with signal voids.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用形状字典分割
图像分割在许多医学应用中起着重要的作用。自动分割算法受到低信噪比和由运动和信号空洞引起的明显伪影的挑战。在这项研究中,我们提出了一种新的基于水平集的形状字典分割方法。与以往使用单一模板或概率模型的研究不同,我们提出构建形状字典,并将形状先验建模为字典中形状模板的稀疏组合。该方法在低信噪比的MR图像上产生了很好的分割结果,即使存在信号空洞。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MRI based attenuation correction for PET/MRI via MRF segmentation and sparse regression estimated CT DTI-DeformIt: Generating ground-truth validation data for diffusion tensor image analysis tasks Functional parcellation of the hippocampus by clustering resting state fMRI signals Detecting cell assembly interaction patterns via Bayesian based change-point detection and graph inference model Topological texture-based method for mass detection in breast ultrasound image
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1