Method for heat flux measurement on LED light engines

T. Treurniet, Karel Joop Bosschaart
{"title":"Method for heat flux measurement on LED light engines","authors":"T. Treurniet, Karel Joop Bosschaart","doi":"10.1109/STHERM.2011.5767213","DOIUrl":null,"url":null,"abstract":"In order to ensure the exchangeability of LED light engines in LED based luminaires, the Zhaga consortium develops standard specifications for the interfaces of LED light engines. The complete interface definition consists of the description of a mechanical, optical, electrical and thermal interface. The thermal interface has to ensure a good thermal contact between the engine and the fixture. Next to that, the heat spreading capabilities of both the engine and the fixture have to be taken into account in order to ensure sufficient heat spreading capabilities of complete luminaire. In order to come to a practical interface definition, a number of tests and test devices are proposed. Engines and fixture have to pass these tests in order to become Zhaga compliant. One test is the heat flux measurement on the LED light engine in order to determine the amount of heat that has to be transferred from the engine via the fixture. The second test is a test with a reference thermal engine in order to determine the heat spreading capabilities and the thermal resistance of a fixture. The final test is a test with a reference luminaire in order to determine the heat spreading capabilities of the LED light engine. With these three tests, we can realize a practical thermal interface definition.","PeriodicalId":128077,"journal":{"name":"2011 27th Annual IEEE Semiconductor Thermal Measurement and Management Symposium","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 27th Annual IEEE Semiconductor Thermal Measurement and Management Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/STHERM.2011.5767213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In order to ensure the exchangeability of LED light engines in LED based luminaires, the Zhaga consortium develops standard specifications for the interfaces of LED light engines. The complete interface definition consists of the description of a mechanical, optical, electrical and thermal interface. The thermal interface has to ensure a good thermal contact between the engine and the fixture. Next to that, the heat spreading capabilities of both the engine and the fixture have to be taken into account in order to ensure sufficient heat spreading capabilities of complete luminaire. In order to come to a practical interface definition, a number of tests and test devices are proposed. Engines and fixture have to pass these tests in order to become Zhaga compliant. One test is the heat flux measurement on the LED light engine in order to determine the amount of heat that has to be transferred from the engine via the fixture. The second test is a test with a reference thermal engine in order to determine the heat spreading capabilities and the thermal resistance of a fixture. The final test is a test with a reference luminaire in order to determine the heat spreading capabilities of the LED light engine. With these three tests, we can realize a practical thermal interface definition.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LED光引擎热流密度测量方法
为了确保LED光引擎在LED灯具中的互换性,Zhaga联盟为LED光引擎的接口制定了标准规范。完整的界面定义包括对机械、光学、电和热界面的描述。热界面必须确保发动机和夹具之间有良好的热接触。其次,必须考虑发动机和灯具的散热能力,以确保整个灯具有足够的散热能力。为了得到一个实用的接口定义,提出了一些测试和测试设备。发动机和夹具必须通过这些测试,以成为Zhaga合规。一项测试是对LED光引擎进行热流测量,以确定必须通过灯具从引擎传递的热量。第二个测试是用参考热机进行测试,以确定夹具的散热能力和热阻。最后的测试是一个参考灯具的测试,以确定LED光引擎的散热能力。通过这三个测试,我们可以实现一个实用的热界面定义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data center design using improved CFD modeling and cost reduction analysis Data center efficiency with higher ambient temperatures and optimized cooling control Effect of server load variation on rack air flow distribution in a raised floor data center Thermal design in the Design for Six Sigma — DIDOV framework ASIC package lid effects on temperature and lifetime
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1