Stefano Taccetti, Lorenzo Mistral Peppi, F. Zonzini, M. Mohammadgholiha, Matteo Zauli, L. Marchi
{"title":"Design of a Novel Pulser for Frequency Selective-based Power and Data Transmission","authors":"Stefano Taccetti, Lorenzo Mistral Peppi, F. Zonzini, M. Mohammadgholiha, Matteo Zauli, L. Marchi","doi":"10.1109/MetroAutomotive57488.2023.10219099","DOIUrl":null,"url":null,"abstract":"This paper proposes an ultrasonic system based on an innovative piezoelectric device, the Frequency Steerable Acoustic Transducer (FSAT). The FSAT’s high directivity can be exploited for structural inspection, and through-metal data communication and wireless power transfer. These three functions are fundamental in an autonomous sensor system developed for condition monitoring, which is a central requirement in many sectors, such as automotive. A novel pulser, made up of a signal generator and a power amplifier, has been designed and simulated, for effectively driving the FSAT transducer. Experimental results showed that the designed power amplifier is able to reach a gain of 17.80 dB driving the piezoelectric transducer with a maximum peak-to-peak voltage of 24 V and that its bandwidth is [3.1-964] kHz. Experiments have been carried out showing a great improvement in trasmission using the designed amplifier.","PeriodicalId":115847,"journal":{"name":"2023 IEEE International Workshop on Metrology for Automotive (MetroAutomotive)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Workshop on Metrology for Automotive (MetroAutomotive)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MetroAutomotive57488.2023.10219099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes an ultrasonic system based on an innovative piezoelectric device, the Frequency Steerable Acoustic Transducer (FSAT). The FSAT’s high directivity can be exploited for structural inspection, and through-metal data communication and wireless power transfer. These three functions are fundamental in an autonomous sensor system developed for condition monitoring, which is a central requirement in many sectors, such as automotive. A novel pulser, made up of a signal generator and a power amplifier, has been designed and simulated, for effectively driving the FSAT transducer. Experimental results showed that the designed power amplifier is able to reach a gain of 17.80 dB driving the piezoelectric transducer with a maximum peak-to-peak voltage of 24 V and that its bandwidth is [3.1-964] kHz. Experiments have been carried out showing a great improvement in trasmission using the designed amplifier.