{"title":"Combining Cartesian Trajectories with Joint Constraints for Human-Like Robot-Human Handover","authors":"Robin Rasch, S. Wachsmuth, Matthias König","doi":"10.1109/Humanoids43949.2019.9034990","DOIUrl":null,"url":null,"abstract":"This thesis addresses the problem of modeling and planning anthropomorphic movements for robots during object handovers. The anthropomorphic movement during interactions between humans and robots should enable humans to feel safer and thus more accepting of robots. Using a combined model of Cartesian trajectory and the limitations of joint function using the recorded primitive joint movements of humans, we aimed to model and plan such an anthropomorphic movement. A simulation involving two different robots (the humanoid robot Pepper, and a Franka Panda) was used to evaluate the accuracy of the proposed model against human motion models and test the required planning time. The results showed that the proposed model is a useful trade-off between a model in Cartesian space and a model in joint space.","PeriodicalId":404758,"journal":{"name":"2019 IEEE-RAS 19th International Conference on Humanoid Robots (Humanoids)","volume":"392 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE-RAS 19th International Conference on Humanoid Robots (Humanoids)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Humanoids43949.2019.9034990","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
This thesis addresses the problem of modeling and planning anthropomorphic movements for robots during object handovers. The anthropomorphic movement during interactions between humans and robots should enable humans to feel safer and thus more accepting of robots. Using a combined model of Cartesian trajectory and the limitations of joint function using the recorded primitive joint movements of humans, we aimed to model and plan such an anthropomorphic movement. A simulation involving two different robots (the humanoid robot Pepper, and a Franka Panda) was used to evaluate the accuracy of the proposed model against human motion models and test the required planning time. The results showed that the proposed model is a useful trade-off between a model in Cartesian space and a model in joint space.