Acoustic Velocity-Independent DOA Estimation for L-Shaped Array via Modified Decoupled Atomic Norm Minimization

Gengin Ning, Yu Wang
{"title":"Acoustic Velocity-Independent DOA Estimation for L-Shaped Array via Modified Decoupled Atomic Norm Minimization","authors":"Gengin Ning, Yu Wang","doi":"10.1109/ICSPCC55723.2022.9984535","DOIUrl":null,"url":null,"abstract":"In this paper, a DOA estimation method for underwater application is proposed. In the first stage, a semi-positive definite programming (SDP) model on the L-shaped array mutual covariance matrix (MCM) is constructed with the principle of decoupled atomic norm minimization (DANM). This model allows a more accurate reconstruction of the MCM for the L-shaped array. In the second stage, an omnidirectional velocity independence (VI) method is proposed to eliminate the acoustic velocity factor. Numerical simulations show that the proposed method not only achieves effective DOA estimation in the environment of the unknown acoustic velocity but also its performance, especially under high SNR conditions, is significantly improved.","PeriodicalId":346917,"journal":{"name":"2022 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC)","volume":"166 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSPCC55723.2022.9984535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, a DOA estimation method for underwater application is proposed. In the first stage, a semi-positive definite programming (SDP) model on the L-shaped array mutual covariance matrix (MCM) is constructed with the principle of decoupled atomic norm minimization (DANM). This model allows a more accurate reconstruction of the MCM for the L-shaped array. In the second stage, an omnidirectional velocity independence (VI) method is proposed to eliminate the acoustic velocity factor. Numerical simulations show that the proposed method not only achieves effective DOA estimation in the environment of the unknown acoustic velocity but also its performance, especially under high SNR conditions, is significantly improved.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于改进解耦原子范数最小化的l型阵列声速无关DOA估计
本文提出了一种水下应用的DOA估计方法。首先,利用解耦原子范数最小化原理,建立了l形阵列互协方差矩阵(MCM)上的半正定规划模型;该模型可以更精确地重建l型阵列的MCM。在第二阶段,提出了一种全向速度无关(VI)方法来消除声速因素。数值仿真结果表明,该方法不仅能在声速未知的环境下实现有效的DOA估计,而且在高信噪比条件下,其性能得到了显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-Temporal PolSAR Image Classification Based on Polarimetric Scattering Tensor Eigenvalue Decomposition and Deep CNN Model Deep Residual Shrinkage Network With Time-Frequency Features For Bearing Fault Diagnosis Motion parameters estimation of an underwater multitonal source by using field oscillation at different frequencies in deep water Radar-Enhanced Image Fusion-based Object Detection for Autonomous Driving A Reduced-Order Multiple-Model Adaptive Identification Algorithm of Missile Guidance Law
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1