CollectionSwitch: a framework for efficient and dynamic collection selection

D. Costa, A. Andrzejak
{"title":"CollectionSwitch: a framework for efficient and dynamic collection selection","authors":"D. Costa, A. Andrzejak","doi":"10.1145/3168825","DOIUrl":null,"url":null,"abstract":"Selecting collection data structures for a given application is a crucial aspect of the software development. Inefficient usage of collections has been credited as a major cause of performance bloat in applications written in Java, C++ and C#. Furthermore, a single implementation might not be optimal throughout the entire program execution. This demands an adaptive solution that adjusts at runtime the collection implementations to varying workloads. We present CollectionSwitch, an application-level framework for efficient collection adaptation. It selects at runtime collection implementations in order to optimize the execution and memory performance of an application. Unlike previous works, we use workload data on the level of collection allocation sites to guide the optimization process. Our framework identifies allocation sites which instantiate suboptimal collection variants, and selects optimized variants for future instantiations. As a further contribution we propose adaptive collection implementations which switch their underlying data structures according to the size of the collection. We implement this framework in Java, and demonstrate the improvements in terms of time and memory behavior across a range of benchmarks. To our knowledge, it is the first approach which is capable of runtime performance optimization of Java collections with very low overhead.","PeriodicalId":103558,"journal":{"name":"Proceedings of the 2018 International Symposium on Code Generation and Optimization","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 International Symposium on Code Generation and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3168825","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

Selecting collection data structures for a given application is a crucial aspect of the software development. Inefficient usage of collections has been credited as a major cause of performance bloat in applications written in Java, C++ and C#. Furthermore, a single implementation might not be optimal throughout the entire program execution. This demands an adaptive solution that adjusts at runtime the collection implementations to varying workloads. We present CollectionSwitch, an application-level framework for efficient collection adaptation. It selects at runtime collection implementations in order to optimize the execution and memory performance of an application. Unlike previous works, we use workload data on the level of collection allocation sites to guide the optimization process. Our framework identifies allocation sites which instantiate suboptimal collection variants, and selects optimized variants for future instantiations. As a further contribution we propose adaptive collection implementations which switch their underlying data structures according to the size of the collection. We implement this framework in Java, and demonstrate the improvements in terms of time and memory behavior across a range of benchmarks. To our knowledge, it is the first approach which is capable of runtime performance optimization of Java collections with very low overhead.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CollectionSwitch:一个用于高效和动态收集选择的框架
为给定的应用程序选择集合数据结构是软件开发的一个关键方面。在用Java、c++和c#编写的应用程序中,集合的低效使用被认为是导致性能膨胀的主要原因。此外,在整个程序执行过程中,单个实现可能不是最优的。这需要一个自适应的解决方案,在运行时根据不同的工作负载调整集合实现。我们提出了CollectionSwitch,一个用于有效集合适应的应用程序级框架。它在运行时选择收集实现,以优化应用程序的执行和内存性能。与以往的工作不同,我们使用收集分配站点级别的工作负载数据来指导优化过程。我们的框架确定了实例化次优集合变量的分配站点,并为未来的实例化选择优化的变量。作为进一步的贡献,我们提出了自适应集合实现,根据集合的大小切换其底层数据结构。我们在Java中实现了这个框架,并在一系列基准测试中展示了在时间和内存行为方面的改进。据我们所知,它是第一种能够以非常低的开销对Java集合进行运行时性能优化的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High performance stencil code generation with Lift DeLICM: scalar dependence removal at zero memory cost Local memory-aware kernel perforation Analyzing and optimizing task granularity on the JVM Lightweight detection of cache conflicts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1