An optimization algorithm selection to regulate the power plant work

R. Varfolomejeva, R. Petrichenko, A. Sauhats, Jevgeņijs Kucajevs
{"title":"An optimization algorithm selection to regulate the power plant work","authors":"R. Varfolomejeva, R. Petrichenko, A. Sauhats, Jevgeņijs Kucajevs","doi":"10.1109/RTUCON.2015.7343156","DOIUrl":null,"url":null,"abstract":"This paper introduces the optimization algorithm selection for the bids formation in deregulated market. The solution of the task is made on stochastic optimization procedure. The time average revenue maximization approach is taken to analyze and find optimum in uncertainty. The random nature of the future energy prices and river water inflows is considered. A case study is conducted on a realistic hydroelectric power work in cascade and demonstrates the advantages of the stochastic approach. It is concluded that the proposed approach, developed algorithms, the data capture from Internet, enhanced user friendly interface shall support and enable improved decision making for the power station operator.","PeriodicalId":389419,"journal":{"name":"2015 56th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON)","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 56th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTUCON.2015.7343156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces the optimization algorithm selection for the bids formation in deregulated market. The solution of the task is made on stochastic optimization procedure. The time average revenue maximization approach is taken to analyze and find optimum in uncertainty. The random nature of the future energy prices and river water inflows is considered. A case study is conducted on a realistic hydroelectric power work in cascade and demonstrates the advantages of the stochastic approach. It is concluded that the proposed approach, developed algorithms, the data capture from Internet, enhanced user friendly interface shall support and enable improved decision making for the power station operator.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种调节电厂运行的优化算法选择
本文介绍了解除管制市场中投标形成的优化算法选择。用随机优化方法求解该问题。采用时间平均收益最大化方法对不确定条件下的最优方案进行分析。考虑了未来能源价格和河水流入的随机性。最后以实际的水电站梯级工程为例,说明了随机方法的优越性。结论是,所提出的方法、开发的算法、从互联网获取的数据、增强的用户友好界面将支持并使电站运营商能够改进决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Control actions based nonlinear objective function for robust calculations of electrical power system security Selection of standard dynamic model for control systems of mechatronic modules Implementation of fast and accurate modeling method of electric drives University impact on power supply economy, reliability and sustainability enhancement decreasing climate changes System on Chip in modern motion control systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1