A study of automatic speech recognition in Portuguese by the Brazilian General Attorney of the Union

Rodrigo Fay Verqara, Paulo Henrique dos Santos, Guilherme Fay Verqara, Fábio L. L. Mendonça, C. E. L. Veiga, B. Praciano, Daniel Alves da Silva, Rafael Timóteo de Sousa Júnior
{"title":"A study of automatic speech recognition in Portuguese by the Brazilian General Attorney of the Union","authors":"Rodrigo Fay Verqara, Paulo Henrique dos Santos, Guilherme Fay Verqara, Fábio L. L. Mendonça, C. E. L. Veiga, B. Praciano, Daniel Alves da Silva, Rafael Timóteo de Sousa Júnior","doi":"10.1109/ICDMW58026.2022.00038","DOIUrl":null,"url":null,"abstract":"This article presents a study of an automatic speech recognition system in Portuguese applied to videos by the General Attorney of the Union of Brazil. As they are confidential videos, using proprietary software from large companies is not allowed for security reasons. Thus, constructing an artificial intelligence model capable of performing automatic speech recognition in Portuguese in the judicial context and making this model available for large-scale inference is critical to maintaining data security. For this purpose, a dataset in Brazilian Portuguese was used by a combination of 3 datasets already built. The system used TDNN Jasper and QuartzNet architectures for network training, obtaining promising preliminary results, having a word error rate (WER) of 56% without using a linguistic model.","PeriodicalId":146687,"journal":{"name":"2022 IEEE International Conference on Data Mining Workshops (ICDMW)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Data Mining Workshops (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW58026.2022.00038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This article presents a study of an automatic speech recognition system in Portuguese applied to videos by the General Attorney of the Union of Brazil. As they are confidential videos, using proprietary software from large companies is not allowed for security reasons. Thus, constructing an artificial intelligence model capable of performing automatic speech recognition in Portuguese in the judicial context and making this model available for large-scale inference is critical to maintaining data security. For this purpose, a dataset in Brazilian Portuguese was used by a combination of 3 datasets already built. The system used TDNN Jasper and QuartzNet architectures for network training, obtaining promising preliminary results, having a word error rate (WER) of 56% without using a linguistic model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在葡萄牙语自动语音识别的研究由巴西总检察长联盟
本文介绍了巴西联邦总检察长应用于视频的葡萄牙语自动语音识别系统的研究。由于是机密视频,因此出于安全考虑,不允许使用大公司的专有软件。因此,构建一个能够在司法环境中执行葡萄牙语自动语音识别的人工智能模型,并使该模型可用于大规模推理,对于维护数据安全至关重要。为此,一个巴西葡萄牙语的数据集被3个已经建立的数据集组合使用。该系统使用TDNN Jasper和QuartzNet架构进行网络训练,获得了有希望的初步结果,在不使用语言模型的情况下,单词错误率(WER)为56%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Above Ground Biomass Estimation of a Cocoa Plantation using Machine Learning Backdoor Poisoning of Encrypted Traffic Classifiers Identifying Patterns of Vulnerability Incidence in Foundational Machine Learning Repositories on GitHub: An Unsupervised Graph Embedding Approach Data-driven Kernel Subspace Clustering with Local Manifold Preservation Persona-Based Conversational AI: State of the Art and Challenges
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1