Efficient inference for mixed Bayesian networks

Kuo-Chu Chang, Z. Tian
{"title":"Efficient inference for mixed Bayesian networks","authors":"Kuo-Chu Chang, Z. Tian","doi":"10.1109/ICIF.2002.1021199","DOIUrl":null,"url":null,"abstract":"A Bayesian network is a compact representation for probabilistic models and inference. They have been used successfully for multisensor fusion and situation assessment. It is well known that, in general, the inference algorithms to compute the exact posterior probability of the target state are either computationally infeasible for dense networks or impossible for mixed discrete continuous networks. In those cases, one approach is to compute the approximate results using simulation methods. This paper proposes efficient inference methods for those cases. The goal is not to compute the exact or approximate posterior probability of the target state, but to identify the top (most likely) ones in an efficient manner. The approach is to use intelligent simulation techniques where previous samples will be used to guide the future sampling strategy. By focusing the sampling on the \"important\" space, we are able to sort out the top candidates quickly. Simulation results are included to demonstrate the performances of the algorithms.","PeriodicalId":399150,"journal":{"name":"Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIF.2002.1021199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

A Bayesian network is a compact representation for probabilistic models and inference. They have been used successfully for multisensor fusion and situation assessment. It is well known that, in general, the inference algorithms to compute the exact posterior probability of the target state are either computationally infeasible for dense networks or impossible for mixed discrete continuous networks. In those cases, one approach is to compute the approximate results using simulation methods. This paper proposes efficient inference methods for those cases. The goal is not to compute the exact or approximate posterior probability of the target state, but to identify the top (most likely) ones in an efficient manner. The approach is to use intelligent simulation techniques where previous samples will be used to guide the future sampling strategy. By focusing the sampling on the "important" space, we are able to sort out the top candidates quickly. Simulation results are included to demonstrate the performances of the algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
混合贝叶斯网络的高效推理
贝叶斯网络是概率模型和推理的紧凑表示。它们已成功地用于多传感器融合和态势评估。众所周知,一般来说,计算目标状态的精确后验概率的推理算法要么在密集网络中计算不可行,要么在混合离散连续网络中不可能。在这些情况下,一种方法是使用模拟方法计算近似结果。本文针对这些情况提出了有效的推理方法。目标不是计算目标状态的精确或近似后验概率,而是以有效的方式识别最可能的(最可能的)状态。该方法是使用智能模拟技术,其中以前的样本将用于指导未来的采样策略。通过将采样集中在“重要”空间上,我们能够快速地挑选出最佳候选。仿真结果验证了算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Approximating fuzzy measures by hierarchically decomposable ones Tracking and fusion for wireless sensor networks A dynamic communication model for loosely coupled hybrid tracking systems On platform-based sensor management An improved Bayes fusion algorithm with the Parzen window method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1