Owen Gauthier, S. Haendler, Ronan Beucher, P. Scheer, Q. Rafhay, C. Theodorou
{"title":"Static and LFN/RTN Local and Global Variability Analysis Using an Addressable Array Test Structure","authors":"Owen Gauthier, S. Haendler, Ronan Beucher, P. Scheer, Q. Rafhay, C. Theodorou","doi":"10.1109/ICMTS55420.2023.10094087","DOIUrl":null,"url":null,"abstract":"The use of an addressable array test structure designed on a 28 nm FD-SOI technology for the variability analysis of static, low frequency noise (LFN) and Random Telegraph Noise (RTN) matching is presented. The experimental setup was validated, and a statistical analysis of the above electrical quantities is provided. Using such structures, combined with a switching matrix, local and global variability analysis can be performed while significantly increasing the number of samples, thus enabling a better description of the variations in LFN and RTN, especially when RTN signatures can be scarce. We show that local variations dominate the noise variability compared to global variations.","PeriodicalId":275144,"journal":{"name":"2023 35th International Conference on Microelectronic Test Structure (ICMTS)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 35th International Conference on Microelectronic Test Structure (ICMTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMTS55420.2023.10094087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The use of an addressable array test structure designed on a 28 nm FD-SOI technology for the variability analysis of static, low frequency noise (LFN) and Random Telegraph Noise (RTN) matching is presented. The experimental setup was validated, and a statistical analysis of the above electrical quantities is provided. Using such structures, combined with a switching matrix, local and global variability analysis can be performed while significantly increasing the number of samples, thus enabling a better description of the variations in LFN and RTN, especially when RTN signatures can be scarce. We show that local variations dominate the noise variability compared to global variations.