Incremental constrained clustering with application to remote sensing images time series

Baptiste Lafabregue, P. Gançarski, J. Weber, G. Forestier
{"title":"Incremental constrained clustering with application to remote sensing images time series","authors":"Baptiste Lafabregue, P. Gançarski, J. Weber, G. Forestier","doi":"10.1109/ICDMW58026.2022.00110","DOIUrl":null,"url":null,"abstract":"Automatically extracting knowledge from various datasets is a valuable task to help experts explore new types of data and save time on annotations. This is especially required for new topics such as emergency management or environmental monitoring. Traditional unsupervised methods often tend to not fulfill experts' intuitions or non-formalized knowledge. On the other hand, supervised methods tend to require a lot of knowledge to be efficient. Constrained clustering, a form of semi-supervised methods, mitigates these two effects, as it allows experts to inject their knowledge into the clustering process. However, constraints often have a poor effect on the result because it is hard for experts to give both informative and coherent constraints. Based on the idea that it is easier to criticize than to construct, this article presents a new method, I-SAMARAH, an incremental constrained clustering method. Through an iterative process, it alternates between a clustering phase where constraints are incorporated, and a criticize phase where the expert can give feedback on the clustering. We demonstrate experimentally the efficiency of our method on remote sensing image time series. We compare it to other constrained clustering methods in terms of result quality and to supervised methods in terms of number of annotations.","PeriodicalId":146687,"journal":{"name":"2022 IEEE International Conference on Data Mining Workshops (ICDMW)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Data Mining Workshops (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW58026.2022.00110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Automatically extracting knowledge from various datasets is a valuable task to help experts explore new types of data and save time on annotations. This is especially required for new topics such as emergency management or environmental monitoring. Traditional unsupervised methods often tend to not fulfill experts' intuitions or non-formalized knowledge. On the other hand, supervised methods tend to require a lot of knowledge to be efficient. Constrained clustering, a form of semi-supervised methods, mitigates these two effects, as it allows experts to inject their knowledge into the clustering process. However, constraints often have a poor effect on the result because it is hard for experts to give both informative and coherent constraints. Based on the idea that it is easier to criticize than to construct, this article presents a new method, I-SAMARAH, an incremental constrained clustering method. Through an iterative process, it alternates between a clustering phase where constraints are incorporated, and a criticize phase where the expert can give feedback on the clustering. We demonstrate experimentally the efficiency of our method on remote sensing image time series. We compare it to other constrained clustering methods in terms of result quality and to supervised methods in terms of number of annotations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
增量约束聚类在遥感影像时间序列中的应用
自动从各种数据集中提取知识是一项有价值的任务,可以帮助专家探索新类型的数据并节省注释时间。这对于诸如应急管理或环境监测等新主题尤其需要。传统的无监督方法往往不能满足专家的直觉或非形式化的知识。另一方面,监督方法往往需要大量的知识才能有效。约束聚类是半监督方法的一种形式,它可以减轻这两种影响,因为它允许专家将他们的知识注入聚类过程。然而,约束通常对结果的影响很差,因为专家很难给出信息和一致的约束。基于“批评容易构建难”的思想,本文提出了一种新的方法——增量约束聚类方法I-SAMARAH。通过迭代过程,它在包含约束的聚类阶段和专家可以对聚类给出反馈的批评阶段之间交替进行。实验证明了该方法在遥感图像时间序列上的有效性。我们将其与其他约束聚类方法在结果质量方面进行比较,并将其与监督方法在注释数量方面进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Above Ground Biomass Estimation of a Cocoa Plantation using Machine Learning Backdoor Poisoning of Encrypted Traffic Classifiers Identifying Patterns of Vulnerability Incidence in Foundational Machine Learning Repositories on GitHub: An Unsupervised Graph Embedding Approach Data-driven Kernel Subspace Clustering with Local Manifold Preservation Persona-Based Conversational AI: State of the Art and Challenges
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1