Neural Network Based Adaptive Model Predictive Control for Power Converters Under Load Parameter Uncertainties

Daming Wang, Z. J. Shen, Xin Yin, Sai Tang, Jui-Pin Wang, Zhikang Shuai
{"title":"Neural Network Based Adaptive Model Predictive Control for Power Converters Under Load Parameter Uncertainties","authors":"Daming Wang, Z. J. Shen, Xin Yin, Sai Tang, Jui-Pin Wang, Zhikang Shuai","doi":"10.1109/CEECT55960.2022.10030277","DOIUrl":null,"url":null,"abstract":"This article proposes a new neural network based adaptive model predictive control (named NN-AMPC) for power converters under load parameter uncertainties. Firstly, a supervisor MPC controller is designed for power converter using matched model parameters. Next, a NN is built and trained offline utilizing the operating information from the supervisor controller. A practical adaptive MPC controller using FPGA is then set up utilizing the trained NN to control the power converter online. The proposed NN-AMPC can adaptively track the variation of load parameters without extra identification process of load parameters. The dynamic response of the NN-AMPC under step changes in load parameters are analyzed and compared with conventional MPC. The concept of NN-AMPC is verified by experimental results on a 3-phase voltage source inverter (VSI) as the case study. It is shown that, the FPGA-based NN-AMPC controller offers better dynamic performance in the presence of uncertain parameters while utilizes reduced FPGA resource requirement compared with the observer based MPC controller.","PeriodicalId":187017,"journal":{"name":"2022 4th International Conference on Electrical Engineering and Control Technologies (CEECT)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 4th International Conference on Electrical Engineering and Control Technologies (CEECT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEECT55960.2022.10030277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article proposes a new neural network based adaptive model predictive control (named NN-AMPC) for power converters under load parameter uncertainties. Firstly, a supervisor MPC controller is designed for power converter using matched model parameters. Next, a NN is built and trained offline utilizing the operating information from the supervisor controller. A practical adaptive MPC controller using FPGA is then set up utilizing the trained NN to control the power converter online. The proposed NN-AMPC can adaptively track the variation of load parameters without extra identification process of load parameters. The dynamic response of the NN-AMPC under step changes in load parameters are analyzed and compared with conventional MPC. The concept of NN-AMPC is verified by experimental results on a 3-phase voltage source inverter (VSI) as the case study. It is shown that, the FPGA-based NN-AMPC controller offers better dynamic performance in the presence of uncertain parameters while utilizes reduced FPGA resource requirement compared with the observer based MPC controller.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
负载参数不确定下基于神经网络的自适应模型预测控制
提出了一种新的基于神经网络的自适应模型预测控制方法(NN-AMPC)。首先,利用匹配的模型参数,设计了功率变换器的监督MPC控制器。接下来,利用来自监督控制器的运行信息构建和离线训练一个神经网络。然后利用训练好的神经网络建立了实用的FPGA自适应MPC控制器,对功率变换器进行在线控制。所提出的神经网络- ampc可以自适应跟踪负荷参数的变化,而不需要额外的负荷参数识别过程。分析了负载参数阶跃变化下NN-AMPC的动态响应,并与传统MPC进行了比较。以三相电压源逆变器(VSI)为例,验证了神经网络- ampc的概念。结果表明,与基于观测器的MPC控制器相比,基于FPGA的NN-AMPC控制器在不确定参数存在时具有更好的动态性能,同时减少了对FPGA资源的需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An optimization model based interval power flow analysis method considering the tracking characteristic of static voltage generator Design of Liquid Level Monitoring and Alarm System in Transformer Accident Oil Pool Mechanism Analysis of the SSR Suppression in DFIG-Based Wind farm Systems with SVCs Evaluation Method of Aging State of Oil-Paper Insulation Based on Time Domain Dielectric Response Study on the Effect of Multi-circuit Laying on Ampacity of Low Smoke Halogen-free Cable
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1