Merging of MOS of Large Image Databases for No-reference Image Visual Quality Assessment

Aki Kaipio, Mykola Ponomarenko, K. Egiazarian
{"title":"Merging of MOS of Large Image Databases for No-reference Image Visual Quality Assessment","authors":"Aki Kaipio, Mykola Ponomarenko, K. Egiazarian","doi":"10.1109/MMSP48831.2020.9287141","DOIUrl":null,"url":null,"abstract":"For training of no-reference image visual quality metrics large specialized image databases are used. For images of the databases mean opinion scores (MOS) are experimentally obtained collecting judgments of many observers. MOS of a given image reflects an averaged human perception of visual quality of the image. Each database has its own unknown scale of MOS values depending on unique content of the database. For training of no-reference metrics based on convolutional networks usually only one selected database is used, because all MOS values on input of training loss function should be in the same scale. In this paper, a simple and effective method of merging of several large databases into one database with transforming of their MOS into one scale is proposed. Accuracy of the proposed method is analyzed. Merged MOS is used for practical training of no-reference metric. Better effectiveness of the training is shown in comparative analysis.","PeriodicalId":188283,"journal":{"name":"2020 IEEE 22nd International Workshop on Multimedia Signal Processing (MMSP)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 22nd International Workshop on Multimedia Signal Processing (MMSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP48831.2020.9287141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

For training of no-reference image visual quality metrics large specialized image databases are used. For images of the databases mean opinion scores (MOS) are experimentally obtained collecting judgments of many observers. MOS of a given image reflects an averaged human perception of visual quality of the image. Each database has its own unknown scale of MOS values depending on unique content of the database. For training of no-reference metrics based on convolutional networks usually only one selected database is used, because all MOS values on input of training loss function should be in the same scale. In this paper, a simple and effective method of merging of several large databases into one database with transforming of their MOS into one scale is proposed. Accuracy of the proposed method is analyzed. Merged MOS is used for practical training of no-reference metric. Better effectiveness of the training is shown in comparative analysis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向无参考图像视觉质量评价的大型图像数据库MOS合并
为了训练无参考图像的视觉质量指标,使用了大型专业图像数据库。对于数据库的图像,平均意见分数(MOS)是通过收集许多观察者的判断而实验得到的。给定图像的MOS反映了人类对图像视觉质量的平均感知。每个数据库都有自己未知的MOS值,这取决于数据库的独特内容。对于基于卷积网络的无参考指标的训练,通常只选择一个数据库,因为训练损失函数输入上的所有MOS值必须在同一尺度上。本文提出了一种简单有效的将多个大型数据库合并为一个数据库并将其MOS转换为一个尺度的方法。分析了该方法的精度。将合并MOS用于无参考度量的实际训练。对比分析表明,该培训具有较好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Leveraging Active Perception for Improving Embedding-based Deep Face Recognition Subjective Test Dataset and Meta-data-based Models for 360° Streaming Video Quality The Suitability of Texture Vibrations Based on Visually Perceived Virtual Textures in Bimodal and Trimodal Conditions DEMI: Deep Video Quality Estimation Model using Perceptual Video Quality Dimensions Learned BRIEF – transferring the knowledge from hand-crafted to learning-based descriptors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1